KiCad PCB EDA Suite
trigo.cpp File Reference

Trigonometric and geometric basic functions. More...

#include <limits>
#include <stdlib.h>
#include <type_traits>
#include <geometry/seg.h>
#include <math/util.h>
#include <math/vector2d.h>
#include <trigo.h>

Go to the source code of this file.

Functions

bool IsPointOnSegment (const wxPoint &aSegStart, const wxPoint &aSegEnd, const wxPoint &aTestPoint)
 Test if aTestPoint is on line defined by aSegStart and aSegEnd. More...
 
bool SegmentIntersectsSegment (const wxPoint &a_p1_l1, const wxPoint &a_p2_l1, const wxPoint &a_p1_l2, const wxPoint &a_p2_l2, wxPoint *aIntersectionPoint)
 Test if two lines intersect. More...
 
bool TestSegmentHit (const wxPoint &aRefPoint, const wxPoint &aStart, const wxPoint &aEnd, int aDist)
 Test if aRefPoint is with aDistance on the line defined by aStart and aEnd. More...
 
const VECTOR2I CalcArcMid (const VECTOR2I &aStart, const VECTOR2I &aEnd, const VECTOR2I &aCenter, bool aMinArcAngle)
 Return the middle point of an arc, half-way between aStart and aEnd. More...
 
double ArcTangente (int dy, int dx)
 
void RotatePoint (int *pX, int *pY, double angle)
 
void RotatePoint (int *pX, int *pY, int cx, int cy, double angle)
 
void RotatePoint (wxPoint *point, const wxPoint &centre, double angle)
 
void RotatePoint (VECTOR2I &point, const VECTOR2I &centre, double angle)
 
void RotatePoint (double *pX, double *pY, double cx, double cy, double angle)
 
void RotatePoint (double *pX, double *pY, double angle)
 
const wxPoint CalcArcCenter (const VECTOR2I &aStart, const VECTOR2I &aEnd, double aAngle)
 
const VECTOR2D CalcArcCenter (const VECTOR2D &aStart, const VECTOR2D &aMid, const VECTOR2D &aEnd)
 
const VECTOR2I CalcArcCenter (const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd)
 Determine the center of an arc or circle given three points on its circumference. More...
 
const wxPoint CalcArcCenter (const wxPoint &aStart, const wxPoint &aMid, const wxPoint &aEnd)
 
double CalcArcAngle (const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd)
 Return the subtended angle for a given arc. More...
 

Detailed Description

Trigonometric and geometric basic functions.

Definition in file trigo.cpp.

Function Documentation

◆ ArcTangente()

double ArcTangente ( int  dy,
int  dx 
)

Definition at line 183 of file trigo.cpp.

184 {
185 
186  /* gcc is surprisingly smart in optimizing these conditions in
187  a tree! */
188 
189  if( dx == 0 && dy == 0 )
190  return 0;
191 
192  if( dy == 0 )
193  {
194  if( dx >= 0 )
195  return 0;
196  else
197  return -1800;
198  }
199 
200  if( dx == 0 )
201  {
202  if( dy >= 0 )
203  return 900;
204  else
205  return -900;
206  }
207 
208  if( dx == dy )
209  {
210  if( dx >= 0 )
211  return 450;
212  else
213  return -1800 + 450;
214  }
215 
216  if( dx == -dy )
217  {
218  if( dx >= 0 )
219  return -450;
220  else
221  return 1800 - 450;
222  }
223 
224  // Of course dy and dx are treated as double
225  return RAD2DECIDEG( std::atan2( (double) dy, (double) dx ) );
226 }
double RAD2DECIDEG(double rad)
Definition: trigo.h:234

References RAD2DECIDEG().

Referenced by BuildCornersList_S_Shape(), LIB_SHAPE::CalcArcAngles(), CalcArcMid(), EDA_SHAPE::calcEdit(), EDA_SHAPE::computeArcBBox(), AM_PRIMITIVE::ConvertShapeToPolygon(), AR_MATRIX::drawSegmentQcq(), fillArcPOLY(), PCB_ARC::GetAngle(), SCH_LINE::GetAngleFrom(), PCB_ARC::GetArcAngleEnd(), PCB_ARC::GetArcAngleStart(), SHAPE_ARC::GetCentralAngle(), CADSTAR_SCH_ARCHIVE_LOADER::getPolarAngle(), CADSTAR_PCB_ARCHIVE_LOADER::getPolarAngle(), SCH_LINE::GetReverseAngleFrom(), GRCSegm(), PCB_ARC::HitTest(), DSN::SPECCTRA_DB::makeIMAGE(), PCAD2KICAD::PCB_ARC::Parse(), BRDITEMS_PLOTTER::PlotFootprintGraphicItem(), BRDITEMS_PLOTTER::PlotPcbShape(), PLOTTER::segmentAsOval(), SHAPE_ARC::SHAPE_ARC(), and AR_MATRIX::traceArc().

◆ CalcArcAngle()

double CalcArcAngle ( const VECTOR2I aStart,
const VECTOR2I aMid,
const VECTOR2I aEnd 
)

Return the subtended angle for a given arc.

Definition at line 496 of file trigo.cpp.

497 {
498  VECTOR2I center = CalcArcCenter( aStart, aMid, aEnd );
499 
500  // Check if the new arc is CW or CCW
501  VECTOR2D startLine = aStart - center;
502  VECTOR2D endLine = aEnd - center;
503  double angle = RAD2DECIDEG( endLine.Angle() - startLine.Angle() );
504 
505  VECTOR2D v1, v2;
506  v1 = aStart - aMid;
507  v2 = aEnd - aMid;
508  double theta = RAD2DECIDEG( v1.Angle() );
509 
510  RotatePoint( &( v1.x ), &( v1.y ), theta );
511  RotatePoint( &( v2.x ), &( v2.y ), theta );
512 
513  bool clockwise = ( ( v1.Angle() - v2.Angle() ) > 0 );
514 
515  // Normalize the angle
516  if( clockwise && angle < 0.0 )
517  angle += 3600.0;
518  else if( !clockwise && angle > 0.0 )
519  angle -= 3600.0;
520 
521  return angle;
522 }
VECTOR2I v2(1, 0)
Test suite for KiCad math code.
Define a general 2D-vector/point.
Definition: vector2d.h:61
double RAD2DECIDEG(double rad)
Definition: trigo.h:234
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
const wxPoint CalcArcCenter(const VECTOR2I &aStart, const VECTOR2I &aEnd, double aAngle)
Definition: trigo.cpp:362
double Angle() const
Compute the angle of the vector.
Definition: vector2d.h:307
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)

References PNS::angle(), VECTOR2< T >::Angle(), CalcArcCenter(), RAD2DECIDEG(), RotatePoint(), v2, VECTOR2< T >::x, and VECTOR2< T >::y.

◆ CalcArcCenter() [1/4]

const wxPoint CalcArcCenter ( const VECTOR2I aStart,
const VECTOR2I aEnd,
double  aAngle 
)

Definition at line 362 of file trigo.cpp.

363 {
364  VECTOR2I start = aStart;
365  VECTOR2I end = aEnd;
366 
367  if( aAngle < 0 )
368  {
369  std::swap( start, end );
370  aAngle = abs( aAngle );
371  }
372 
373  if( aAngle > 180 )
374  {
375  std::swap( start, end );
376  aAngle = 360 - aAngle;
377  }
378 
379  int chord = ( start - end ).EuclideanNorm();
380  int r = ( chord / 2 ) / sin( aAngle * M_PI / 360.0 );
381 
382  VECTOR2I vec = end - start;
383  vec = vec.Resize( r );
384  vec = vec.Rotate( ( 180.0 - aAngle ) * M_PI / 360.0 );
385 
386  return (wxPoint) ( start + vec );
387 }
double EuclideanNorm(const wxPoint &vector)
Euclidean norm of a 2D vector.
Definition: trigo.h:146
Define a general 2D-vector/point.
Definition: vector2d.h:61
E_SERIE r
Definition: eserie.cpp:41
VECTOR2< T > Resize(T aNewLength) const
Return a vector of the same direction, but length specified in aNewLength.
Definition: vector2d.h:404
VECTOR2< T > Rotate(double aAngle) const
Rotate the vector by a given angle.
Definition: vector2d.h:371

References EuclideanNorm(), r, VECTOR2< T >::Resize(), and VECTOR2< T >::Rotate().

Referenced by CalcArcAngle(), and CalcArcCenter().

◆ CalcArcCenter() [2/4]

const VECTOR2D CalcArcCenter ( const VECTOR2D aStart,
const VECTOR2D aMid,
const VECTOR2D aEnd 
)

Definition at line 390 of file trigo.cpp.

391 {
392  VECTOR2D center;
393  double yDelta_21 = aMid.y - aStart.y;
394  double xDelta_21 = aMid.x - aStart.x;
395  double yDelta_32 = aEnd.y - aMid.y;
396  double xDelta_32 = aEnd.x - aMid.x;
397 
398  // This is a special case for aMid as the half-way point when aSlope = 0 and bSlope = inf
399  // or the other way around. In that case, the center lies in a straight line between
400  // aStart and aEnd
401  if( ( ( xDelta_21 == 0.0 ) && ( yDelta_32 == 0.0 ) ) ||
402  ( ( yDelta_21 == 0.0 ) && ( xDelta_32 == 0.0 ) ) )
403  {
404  center.x = ( aStart.x + aEnd.x ) / 2.0;
405  center.y = ( aStart.y + aEnd.y ) / 2.0 ;
406  return center;
407  }
408 
409  // Prevent div=0 errors
410  if( xDelta_21 == 0.0 )
411  xDelta_21 = std::numeric_limits<double>::epsilon();
412 
413  if( xDelta_32 == 0.0 )
414  xDelta_32 = -std::numeric_limits<double>::epsilon();
415 
416  double aSlope = yDelta_21 / xDelta_21;
417  double bSlope = yDelta_32 / xDelta_32;
418 
419  if( aSlope == bSlope )
420  {
421  if( aStart == aEnd )
422  {
423  // This is a special case for a 360 degrees arc. In this case, the center is halfway between
424  // the midpoint and either end point
425  center.x = ( aStart.x + aMid.x ) / 2.0;
426  center.y = ( aStart.y + aMid.y ) / 2.0 ;
427  return center;
428  }
429  else
430  {
431  // If the points are colinear, the center is at infinity, so offset
432  // the slope by a minimal amount
433  // Warning: This will induce a small error in the center location
434  aSlope += std::numeric_limits<double>::epsilon();
435  bSlope -= std::numeric_limits<double>::epsilon();
436  }
437  }
438 
439  // Prevent divide by zero error
440  if( aSlope == 0.0 )
441  aSlope = std::numeric_limits<double>::epsilon();
442 
443  center.x = ( aSlope * bSlope * ( aStart.y - aEnd.y ) +
444  bSlope * ( aStart.x + aMid.x ) -
445  aSlope * ( aMid.x + aEnd.x ) ) / ( 2 * ( bSlope - aSlope ) );
446 
447  center.y = ( ( ( aStart.x + aMid.x ) / 2.0 - center.x ) / aSlope +
448  ( aStart.y + aMid.y ) / 2.0 );
449 
450  return center;
451 }

References VECTOR2< T >::x, and VECTOR2< T >::y.

◆ CalcArcCenter() [3/4]

const VECTOR2I CalcArcCenter ( const VECTOR2I aStart,
const VECTOR2I aMid,
const VECTOR2I aEnd 
)

Determine the center of an arc or circle given three points on its circumference.

Parameters
aStartThe starting point of the circle (equivalent to aEnd)
aMidThe point on the arc, half-way between aStart and aEnd
aEndThe ending point of the circle (equivalent to aStart)
Returns
The center of the circle

Definition at line 454 of file trigo.cpp.

455 {
456  VECTOR2D dStart( static_cast<double>( aStart.x ), static_cast<double>( aStart.y ) );
457  VECTOR2D dMid( static_cast<double>( aMid.x ), static_cast<double>( aMid.y ) );
458  VECTOR2D dEnd( static_cast<double>( aEnd.x ), static_cast<double>( aEnd.y ) );
459  VECTOR2D dCenter = CalcArcCenter( dStart, dMid, dEnd );
460 
461  VECTOR2I iCenter;
462 
463  iCenter.x = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2.0 ),
464  dCenter.x,
465  double( std::numeric_limits<int>::max() / 2.0 ) ) );
466 
467  iCenter.y = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2.0 ),
468  dCenter.y,
469  double( std::numeric_limits<int>::max() / 2.0 ) ) );
470 
471  return iCenter;
472 }
const wxPoint CalcArcCenter(const VECTOR2I &aStart, const VECTOR2I &aEnd, double aAngle)
Definition: trigo.cpp:362
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:73

References CalcArcCenter(), KiROUND(), VECTOR2< T >::x, and VECTOR2< T >::y.

Referenced by SHAPE_ARC::ConstructFromStartEndAngle(), SHAPE_ARC::GetCenter(), PCB_ARC::GetPosition(), PCB_ARC::GetRadius(), SCH_SEXPR_PARSER::parseArc(), CONVERT_TOOL::SegmentToArc(), EDA_SHAPE::SetArcGeometry(), FP_SHAPE::SetArcGeometry0(), and DIALOG_GRAPHIC_ITEM_PROPERTIES::TransferDataFromWindow().

◆ CalcArcCenter() [4/4]

const wxPoint CalcArcCenter ( const wxPoint &  aStart,
const wxPoint &  aMid,
const wxPoint &  aEnd 
)

Definition at line 475 of file trigo.cpp.

476 {
477  VECTOR2D dStart( static_cast<double>( aStart.x ), static_cast<double>( aStart.y ) );
478  VECTOR2D dMid( static_cast<double>( aMid.x ), static_cast<double>( aMid.y ) );
479  VECTOR2D dEnd( static_cast<double>( aEnd.x ), static_cast<double>( aEnd.y ) );
480  VECTOR2D dCenter = CalcArcCenter( dStart, dMid, dEnd );
481 
482  wxPoint iCenter;
483 
484  iCenter.x = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2.0 ),
485  dCenter.x,
486  double( std::numeric_limits<int>::max() / 2.0 ) ) );
487 
488  iCenter.y = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2.0 ),
489  dCenter.y,
490  double( std::numeric_limits<int>::max() / 2.0 ) ) );
491 
492  return iCenter;
493 }
const wxPoint CalcArcCenter(const VECTOR2I &aStart, const VECTOR2I &aEnd, double aAngle)
Definition: trigo.cpp:362
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:73

References CalcArcCenter(), KiROUND(), VECTOR2< T >::x, and VECTOR2< T >::y.

◆ CalcArcMid()

const VECTOR2I CalcArcMid ( const VECTOR2I aStart,
const VECTOR2I aEnd,
const VECTOR2I aCenter,
bool  aMinArcAngle = true 
)

Return the middle point of an arc, half-way between aStart and aEnd.

There are two possible solutions which can be found by toggling aMinArcAngle. The behaviour is undefined for semicircles (i.e. 180 degree arcs).

Parameters
aStartThe starting point of the arc (for calculating the radius)
aEndThe end point of the arc (for determining the arc angle)
aCenterThe center point of the arc
aMinArcAngleIf true, returns the point that results in the smallest arc angle.
Returns
The middle point of the arc

Definition at line 163 of file trigo.cpp.

165 {
166  VECTOR2I startVector = aStart - aCenter;
167  VECTOR2I endVector = aEnd - aCenter;
168 
169  double startAngle = ArcTangente( startVector.y, startVector.x );
170  double endAngle = ArcTangente( endVector.y, endVector.x );
171  double midPointRotAngleDeciDeg = NormalizeAngle180( startAngle - endAngle ) / 2;
172 
173  if( !aMinArcAngle )
174  midPointRotAngleDeciDeg += 1800.0;
175 
176  VECTOR2I newMid = aStart;
177  RotatePoint( newMid, aCenter, midPointRotAngleDeciDeg );
178 
179  return newMid;
180 }
Define a general 2D-vector/point.
Definition: vector2d.h:61
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
T NormalizeAngle180(T Angle)
Normalize angle to be in the -180.0 .. 180.0 range.
Definition: trigo.h:387
double ArcTangente(int dy, int dx)
Definition: trigo.cpp:183

References ArcTangente(), NormalizeAngle180(), RotatePoint(), VECTOR2< T >::x, and VECTOR2< T >::y.

Referenced by CIRCLE::ConstructFromTanTanPt(), EDIT_TOOL::DragArcTrack(), and SCH_EAGLE_PLUGIN::loadSymbolWire().

◆ IsPointOnSegment()

bool IsPointOnSegment ( const wxPoint &  aSegStart,
const wxPoint &  aSegEnd,
const wxPoint &  aTestPoint 
)

Test if aTestPoint is on line defined by aSegStart and aSegEnd.

This function is faster than TestSegmentHit() because aTestPoint should be exactly on the line. This works fine only for H, V and 45 degree line segments.

Parameters
aSegStartThe first point of the line segment.
aSegEndThe second point of the line segment.
aTestPointThe point to test.
Returns
true if the point is on the line segment.

Definition at line 42 of file trigo.cpp.

44 {
45  wxPoint vectSeg = aSegEnd - aSegStart; // Vector from S1 to S2
46  wxPoint vectPoint = aTestPoint - aSegStart; // Vector from S1 to P
47 
48  // Use long long here to avoid overflow in calculations
49  if( (long long) vectSeg.x * vectPoint.y - (long long) vectSeg.y * vectPoint.x )
50  return false; /* Cross product non-zero, vectors not parallel */
51 
52  if( ( (long long) vectSeg.x * vectPoint.x + (long long) vectSeg.y * vectPoint.y ) <
53  ( (long long) vectPoint.x * vectPoint.x + (long long) vectPoint.y * vectPoint.y ) )
54  return false; /* Point not on segment */
55 
56  return true;
57 }

Referenced by SCH_LINE_WIRE_BUS_TOOL::AddJunctionsIfNeeded(), SCH_EDIT_FRAME::BreakSegments(), SCH_LINE_WIRE_BUS_TOOL::finishSegments(), SCH_EDIT_FRAME::TrimWire(), SCH_BUS_WIRE_ENTRY::UpdateDanglingState(), and SCH_BUS_BUS_ENTRY::UpdateDanglingState().

◆ RotatePoint() [1/6]

void RotatePoint ( int *  pX,
int *  pY,
double  angle 
)

Definition at line 229 of file trigo.cpp.

230 {
231  int tmp;
232 
234 
235  // Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
236  if( angle == 0 )
237  return;
238 
239  if( angle == 900 ) /* sin = 1, cos = 0 */
240  {
241  tmp = *pX;
242  *pX = *pY;
243  *pY = -tmp;
244  }
245  else if( angle == 1800 ) /* sin = 0, cos = -1 */
246  {
247  *pX = -*pX;
248  *pY = -*pY;
249  }
250  else if( angle == 2700 ) /* sin = -1, cos = 0 */
251  {
252  tmp = *pX;
253  *pX = -*pY;
254  *pY = tmp;
255  }
256  else
257  {
258  double fangle = DECIDEG2RAD( angle );
259  double sinus = sin( fangle );
260  double cosinus = cos( fangle );
261  double fpx = (*pY * sinus ) + (*pX * cosinus );
262  double fpy = (*pY * cosinus ) - (*pX * sinus );
263  *pX = KiROUND( fpx );
264  *pY = KiROUND( fpy );
265  }
266 }
void NORMALIZE_ANGLE_POS(T &Angle)
Definition: trigo.h:290
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)
double DECIDEG2RAD(double deg)
Definition: trigo.h:233
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:73

References PNS::angle(), DECIDEG2RAD(), KiROUND(), and NORMALIZE_ANGLE_POS().

Referenced by CADSTAR_PCB_ARCHIVE_LOADER::addAttribute(), PCAD2KICAD::PCB_FOOTPRINT::AddToBoard(), PCAD2KICAD::PCB_PAD::AddToFootprint(), CADSTAR_SCH_ARCHIVE_LOADER::applyTransform(), SVG_PLOTTER::Arc(), BuildConvexHull(), BuildCornersList_S_Shape(), PAD::BuildEffectiveShapes(), CalcArcAngle(), CalcArcMid(), EDA_SHAPE::calcEdit(), PSLIKE_PLOTTER::computeTextParameters(), SHAPE_ARC::ConstructFromStartEndAngle(), SHAPE_ARC::ConstructFromStartEndCenter(), ConvertOutlineToPolygon(), AM_PRIMITIVE::ConvertShapeToPolygon(), D_CODE::ConvertShapeToPolygon(), CornerListToPolygon(), PCAD2KICAD::CorrectTextPosition(), EXCELLON_WRITER::createDrillFile(), MICROWAVE_TOOL::createFootprint(), SCH_GLOBALLABEL::CreateGraphicShape(), AM_PRIMITIVE::DrawBasicShape(), CADSTAR_PCB_ARCHIVE_LOADER::drawCadstarText(), DrawHalfOpenCylinder(), AR_MATRIX::drawSegmentQcq(), GBR_TO_PCB_EXPORTER::export_segarc_copper_item(), EXPORTER_PCB_VRML::ExportVrmlFootprint(), fillArcPOLY(), CADSTAR_ARCHIVE_PARSER::FixTextPositionNoAlignment(), GERBER_PLOTTER::FlashPadChamferRoundRect(), GERBER_PLOTTER::FlashPadCustom(), PSLIKE_PLOTTER::FlashPadOval(), HPGL_PLOTTER::FlashPadOval(), PSLIKE_PLOTTER::FlashPadRect(), HPGL_PLOTTER::FlashPadRect(), DXF_PLOTTER::FlashPadRect(), PSLIKE_PLOTTER::FlashPadTrapez(), GERBER_PLOTTER::FlashPadTrapez(), HPGL_PLOTTER::FlashPadTrapez(), DXF_PLOTTER::FlashPadTrapez(), GERBER_PLOTTER::FlashRegularPolygon(), geom_transf(), GERBER_DRAW_ITEM::GetABPosition(), CN_ITEM::GetAnchor(), EDA_SHAPE::GetArcMid(), FP_SHAPE::GetArcMid0(), LIB_TEXT::GetBoundingBox(), SCH_FIELD::GetBoundingBox(), LIB_FIELD::GetBoundingBox(), LIB_PIN::GetBoundingBox(), SCH_TEXT::GetBoundingBox(), EDA_SHAPE::getBoundingBox(), SCH_LABEL::GetBoundingBox(), EDA_RECT::GetBoundingBoxRotated(), DS_DATA_ITEM_POLYGONS::GetCornerPosition(), CADSTAR_PCB_ARCHIVE_LOADER::getKiCadPad(), EDA_TEXT::GetLinePositions(), CADSTAR_SCH_ARCHIVE_LOADER::getLocationOfNetElement(), EDA_SHAPE::GetRectCorners(), ARRAY_CIRCULAR_OPTIONS::GetTransform(), GERBER_DRAW_ITEM::GetXYPosition(), GRArc(), GRCSegm(), GRFilledArc(), ALTIUM_PCB::HelperParseDimensions6Center(), ALTIUM_PCB::HelperParseDimensions6Leader(), idf_export_footprint(), RENDER_3D_RAYTRACE::insertHole(), EDA_RECT::Intersects(), SCH_LEGACY_PLUGIN_CACHE::loadArc(), LEGACY_PLUGIN::loadPAD(), EAGLE_PLUGIN::loadPlain(), CADSTAR_SCH_ARCHIVE_LOADER::loadSchematicSymbolInstances(), CADSTAR_SCH_ARCHIVE_LOADER::loadSymDefIntoLibrary(), FOOTPRINT::MoveAnchorPosition(), EAGLE_PLUGIN::packageCircle(), SCH_ALTIUM_PLUGIN::ParseArc(), ALTIUM_PCB::ParseComponentsBodies6Data(), GPCB_FPL_CACHE::parseFOOTPRINT(), PCB_PARSER::parseFOOTPRINT_unchecked(), BRDITEMS_PLOTTER::PlotFootprintGraphicItem(), GERBER_PLOTTER::plotRoundRectAsRegion(), FABMASTER::processArc(), SCH_JUNCTION::Rotate(), PCB_TARGET::Rotate(), SCH_NO_CONNECT::Rotate(), PCB_TRACK::Rotate(), PCB_TEXT::Rotate(), SCH_BUS_ENTRY_BASE::Rotate(), LIB_TEXT::Rotate(), FP_TEXT::Rotate(), SCH_BITMAP::Rotate(), SCH_FIELD::Rotate(), SCH_SHEET_PIN::Rotate(), LIB_FIELD::Rotate(), SCH_LINE::Rotate(), SCH_TEXT::Rotate(), LIB_PIN::Rotate(), PCB_DIMENSION_BASE::Rotate(), FOOTPRINT::Rotate(), PCB_ARC::Rotate(), EDA_SHAPE::rotate(), SCH_SHEET::Rotate(), SCH_GLOBALLABEL::Rotate(), ZONE::Rotate(), SCH_SYMBOL::Rotate(), PAD::Rotate(), SCH_GLOBALLABEL::Rotate90(), SCH_LINE::RotateEnd(), RotatePoint(), SCH_LINE::RotateStart(), EDA_SHAPE::SetArcAngleAndEnd(), FP_SHAPE::SetArcAngleAndEnd0(), DS_DATA_ITEM_POLYGONS::SetBoundingBox(), FP_SHAPE::SetDrawCoord(), FP_TEXT::SetDrawCoord(), PAD::SetDrawCoord(), FP_SHAPE::SetLocalCoord(), FP_TEXT::SetLocalCoord(), PAD::SetLocalCoord(), SHAPE_ARC::SHAPE_ARC(), PAD::ShapePos(), PLOTTER::sketchOval(), PNS_KICAD_IFACE_BASE::syncPad(), FP_TEXT::TextHitTest(), EDA_TEXT::TextHitTest(), AR_MATRIX::TraceFilledRectangle(), DIALOG_PAD_PROPERTIES::TransferDataFromWindow(), EAGLE_PLUGIN::transferPad(), BOARD_ADAPTER::transformArcToSegments(), EDA_TEXT::TransformBoundingBoxWithClearanceToPolygon(), TransformCircleToPolygon(), TransformOvalToPolygon(), EDA_SHAPE::TransformShapeWithClearanceToPolygon(), PAD::TransformShapeWithClearanceToPolygon(), PCB_POINT_EDITOR::updateItem(), and GERBER_PLOTTER::writeApertureList().

◆ RotatePoint() [2/6]

void RotatePoint ( int *  pX,
int *  pY,
int  cx,
int  cy,
double  angle 
)

Definition at line 269 of file trigo.cpp.

270 {
271  int ox, oy;
272 
273  ox = *pX - cx;
274  oy = *pY - cy;
275 
276  RotatePoint( &ox, &oy, angle );
277 
278  *pX = ox + cx;
279  *pY = oy + cy;
280 }
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)

References PNS::angle(), and RotatePoint().

◆ RotatePoint() [3/6]

void RotatePoint ( wxPoint *  point,
const wxPoint &  centre,
double  angle 
)

Definition at line 283 of file trigo.cpp.

284 {
285  int ox, oy;
286 
287  ox = point->x - centre.x;
288  oy = point->y - centre.y;
289 
290  RotatePoint( &ox, &oy, angle );
291  point->x = ox + centre.x;
292  point->y = oy + centre.y;
293 }
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)

References PNS::angle(), and RotatePoint().

◆ RotatePoint() [4/6]

void RotatePoint ( VECTOR2I point,
const VECTOR2I centre,
double  angle 
)

Definition at line 295 of file trigo.cpp.

296 {
297  wxPoint c( centre.x, centre.y );
298  wxPoint p( point.x, point.y );
299 
300  RotatePoint(&p, c, angle);
301 
302  point.x = p.x;
303  point.y = p.y;
304 }
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)

References PNS::angle(), RotatePoint(), VECTOR2< T >::x, and VECTOR2< T >::y.

◆ RotatePoint() [5/6]

void RotatePoint ( double *  pX,
double *  pY,
double  cx,
double  cy,
double  angle 
)

Definition at line 307 of file trigo.cpp.

308 {
309  double ox, oy;
310 
311  ox = *pX - cx;
312  oy = *pY - cy;
313 
314  RotatePoint( &ox, &oy, angle );
315 
316  *pX = ox + cx;
317  *pY = oy + cy;
318 }
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)

References PNS::angle(), and RotatePoint().

◆ RotatePoint() [6/6]

void RotatePoint ( double *  pX,
double *  pY,
double  angle 
)

Definition at line 321 of file trigo.cpp.

322 {
323  double tmp;
324 
326 
327  // Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
328  if( angle == 0 )
329  return;
330 
331  if( angle == 900 ) /* sin = 1, cos = 0 */
332  {
333  tmp = *pX;
334  *pX = *pY;
335  *pY = -tmp;
336  }
337  else if( angle == 1800 ) /* sin = 0, cos = -1 */
338  {
339  *pX = -*pX;
340  *pY = -*pY;
341  }
342  else if( angle == 2700 ) /* sin = -1, cos = 0 */
343  {
344  tmp = *pX;
345  *pX = -*pY;
346  *pY = tmp;
347  }
348  else
349  {
350  double fangle = DECIDEG2RAD( angle );
351  double sinus = sin( fangle );
352  double cosinus = cos( fangle );
353 
354  double fpx = (*pY * sinus ) + (*pX * cosinus );
355  double fpy = (*pY * cosinus ) - (*pX * sinus );
356  *pX = fpx;
357  *pY = fpy;
358  }
359 }
void NORMALIZE_ANGLE_POS(T &Angle)
Definition: trigo.h:290
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)
double DECIDEG2RAD(double deg)
Definition: trigo.h:233

References PNS::angle(), DECIDEG2RAD(), and NORMALIZE_ANGLE_POS().

◆ SegmentIntersectsSegment()

bool SegmentIntersectsSegment ( const wxPoint &  a_p1_l1,
const wxPoint &  a_p2_l1,
const wxPoint &  a_p1_l2,
const wxPoint &  a_p2_l2,
wxPoint *  aIntersectionPoint = nullptr 
)

Test if two lines intersect.

Parameters
a_p1_l1The first point of the first line.
a_p2_l1The second point of the first line.
a_p1_l2The first point of the second line.
a_p2_l2The second point of the second line.
aIntersectionPointis filled with the intersection point if it exists
Returns
bool - true if the two segments defined by four points intersect. (i.e. if the 2 segments have at least a common point)

Definition at line 61 of file trigo.cpp.

64 {
65 
66  //We are forced to use 64bit ints because the internal units can overflow 32bit ints when
67  // multiplied with each other, the alternative would be to scale the units down (i.e. divide
68  // by a fixed number).
69  int64_t dX_a, dY_a, dX_b, dY_b, dX_ab, dY_ab;
70  int64_t num_a, num_b, den;
71 
72  //Test for intersection within the bounds of both line segments using line equations of the
73  // form:
74  // x_k(u_k) = u_k * dX_k + x_k(0)
75  // y_k(u_k) = u_k * dY_k + y_k(0)
76  // with 0 <= u_k <= 1 and k = [ a, b ]
77 
78  dX_a = int64_t{ a_p2_l1.x } - a_p1_l1.x;
79  dY_a = int64_t{ a_p2_l1.y } - a_p1_l1.y;
80  dX_b = int64_t{ a_p2_l2.x } - a_p1_l2.x;
81  dY_b = int64_t{ a_p2_l2.y } - a_p1_l2.y;
82  dX_ab = int64_t{ a_p1_l2.x } - a_p1_l1.x;
83  dY_ab = int64_t{ a_p1_l2.y } - a_p1_l1.y;
84 
85  den = dY_a * dX_b - dY_b * dX_a ;
86 
87  //Check if lines are parallel
88  if( den == 0 )
89  return false;
90 
91  num_a = dY_ab * dX_b - dY_b * dX_ab;
92  num_b = dY_ab * dX_a - dY_a * dX_ab;
93 
94  // Only compute the intersection point if requested
95  if( aIntersectionPoint )
96  {
97  *aIntersectionPoint = a_p1_l1;
98  aIntersectionPoint->x += KiROUND( dX_a * ( double )num_a / ( double )den );
99  aIntersectionPoint->y += KiROUND( dY_a * ( double )num_b / ( double )den );
100  }
101 
102  if( den < 0 )
103  {
104  den = -den;
105  num_a = -num_a;
106  num_b = -num_b;
107  }
108 
109  //Test sign( u_a ) and return false if negative
110  if( num_a < 0 )
111  return false;
112 
113  //Test sign( u_b ) and return false if negative
114  if( num_b < 0 )
115  return false;
116 
117  //Test to ensure (u_a <= 1)
118  if( num_a > den )
119  return false;
120 
121  //Test to ensure (u_b <= 1)
122  if( num_b > den )
123  return false;
124 
125  return true;
126 }
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:73

References KiROUND().

Referenced by EDA_RECT::Intersects().

◆ TestSegmentHit()

bool TestSegmentHit ( const wxPoint &  aRefPoint,
const wxPoint &  aStart,
const wxPoint &  aEnd,
int  aDist 
)

Test if aRefPoint is with aDistance on the line defined by aStart and aEnd.

Parameters
aRefPoint= reference point to test
aStartis the first end-point of the line segment
aEndis the second end-point of the line segment
aDist= maximum distance for hit

Definition at line 129 of file trigo.cpp.

131 {
132  int xmin = aStart.x;
133  int xmax = aEnd.x;
134  int ymin = aStart.y;
135  int ymax = aEnd.y;
136  wxPoint delta = aStart - aRefPoint;
137 
138  if( xmax < xmin )
139  std::swap( xmax, xmin );
140 
141  if( ymax < ymin )
142  std::swap( ymax, ymin );
143 
144  // First, check if we are outside of the bounding box
145  if( ( ymin - aRefPoint.y > aDist ) || ( aRefPoint.y - ymax > aDist ) )
146  return false;
147 
148  if( ( xmin - aRefPoint.x > aDist ) || ( aRefPoint.x - xmax > aDist ) )
149  return false;
150 
151  // Next, eliminate easy cases
152  if( aStart.x == aEnd.x && aRefPoint.y > ymin && aRefPoint.y < ymax )
153  return std::abs( delta.x ) <= aDist;
154 
155  if( aStart.y == aEnd.y && aRefPoint.x > xmin && aRefPoint.x < xmax )
156  return std::abs( delta.y ) <= aDist;
157 
158  SEG segment( aStart, aEnd );
159  return segment.SquaredDistance( aRefPoint ) < SEG::Square( aDist + 1 );
160 }
static SEG::ecoord Square(int a)
Definition: seg.h:122
Definition: seg.h:40
constexpr int delta

References delta, SEG::Square(), and SEG::SquaredDistance().

Referenced by SCH_EAGLE_PLUGIN::addBusEntries(), EE_GRID_HELPER::computeAnchors(), DRAWING_TOOL::DrawVia(), SCH_BUS_ENTRY_BASE::HitTest(), DS_DRAW_ITEM_LINE::HitTest(), PCB_TRACK::HitTest(), GERBER_DRAW_ITEM::HitTest(), SCH_LINE::HitTest(), DS_DRAW_ITEM_RECT::HitTest(), EDA_SHAPE::hitTest(), SCH_EAGLE_PLUGIN::moveLabels(), and SCH_TEXT::UpdateDanglingState().