KiCad PCB EDA Suite
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
zone_filler.cpp
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2014-2017 CERN
5 * Copyright The KiCad Developers, see AUTHORS.txt for contributors.
6 * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
7 *
8 * This program is free software: you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation, either version 3 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, you may find one here:
20 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
21 * or you may search the http://www.gnu.org website for the version 2 license,
22 * or you may write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
24 */
25
26#include <future>
27#include <core/kicad_algo.h>
28#include <advanced_config.h>
29#include <board.h>
31#include <zone.h>
32#include <footprint.h>
33#include <pad.h>
34#include <pcb_target.h>
35#include <pcb_track.h>
36#include <pcb_text.h>
37#include <pcb_textbox.h>
38#include <pcb_tablecell.h>
39#include <pcb_table.h>
40#include <pcb_dimension.h>
43#include <board_commit.h>
44#include <progress_reporter.h>
48#include <geometry/vertex_set.h>
49#include <kidialog.h>
50#include <thread_pool.h>
51#include <math/util.h> // for KiROUND
52#include "zone_filler.h"
53#include "project.h"
55
56// Helper classes for connect_nearby_polys
58{
59public:
60 RESULTS( int aOutline1, int aOutline2, int aVertex1, int aVertex2 ) :
61 m_outline1( aOutline1 ), m_outline2( aOutline2 ),
62 m_vertex1( aVertex1 ), m_vertex2( aVertex2 )
63 {
64 }
65
66 bool operator<( const RESULTS& aOther ) const
67 {
68 if( m_outline1 != aOther.m_outline1 )
69 return m_outline1 < aOther.m_outline1;
70 if( m_outline2 != aOther.m_outline2 )
71 return m_outline2 < aOther.m_outline2;
72 if( m_vertex1 != aOther.m_vertex1 )
73 return m_vertex1 < aOther.m_vertex1;
74 return m_vertex2 < aOther.m_vertex2;
75 }
76
81};
82
84{
85public:
86 VERTEX_CONNECTOR( const BOX2I& aBBox, const SHAPE_POLY_SET& aPolys, int aDist ) : VERTEX_SET( 0 )
87 {
88 SetBoundingBox( aBBox );
89 VERTEX* tail = nullptr;
90
91 for( int i = 0; i < aPolys.OutlineCount(); i++ )
92 tail = createList( aPolys.Outline( i ), tail, (void*)( intptr_t )( i ) );
93
94 if( tail )
95 tail->updateList();
96 m_dist = aDist;
97 }
98
99 VERTEX* getPoint( VERTEX* aPt ) const
100 {
101 // z-order range for the current point ± limit bounding box
102 const uint32_t maxZ = zOrder( aPt->x + m_dist, aPt->y + m_dist );
103 const uint32_t minZ = zOrder( aPt->x - m_dist, aPt->y - m_dist );
104 const SEG::ecoord limit2 = SEG::Square( m_dist );
105
106 // first look for points in increasing z-order
107 SEG::ecoord min_dist = std::numeric_limits<SEG::ecoord>::max();
108 VERTEX* retval = nullptr;
109
110 auto check_pt = [&]( VERTEX* p )
111 {
112 VECTOR2D diff( p->x - aPt->x, p->y - aPt->y );
113 SEG::ecoord dist2 = diff.SquaredEuclideanNorm();
114
115 if( dist2 > 0 && dist2 < limit2 && dist2 < min_dist && p->isEar( true ) )
116 {
117 min_dist = dist2;
118 retval = p;
119 }
120 };
121
122 VERTEX* p = aPt->nextZ;
123
124 while( p && p->z <= maxZ )
125 {
126 check_pt( p );
127 p = p->nextZ;
128 }
129
130 p = aPt->prevZ;
131
132 while( p && p->z >= minZ )
133 {
134 check_pt( p );
135 p = p->prevZ;
136 }
137
138 return retval;
139 }
140
142 {
143 if( m_vertices.empty() )
144 return;
145
146 VERTEX* p = m_vertices.front().next;
147 std::set<VERTEX*> visited;
148
149 while( p != &m_vertices.front() )
150 {
151 // Skip points that are concave
152 if( !p->isEar() )
153 {
154 p = p->next;
155 continue;
156 }
157
158 VERTEX* q = nullptr;
159
160 if( ( visited.empty() || !visited.contains( p ) ) && ( q = getPoint( p ) ) )
161 {
162 visited.insert( p );
163
164 if( !visited.contains( q ) &&
165 m_results.emplace( (intptr_t) p->GetUserData(), (intptr_t) q->GetUserData(),
166 p->i, q->i ).second )
167 {
168 // We don't want to connect multiple points in the same vicinity, so skip
169 // 2 points before and after each point and match.
170 visited.insert( p->prev );
171 visited.insert( p->prev->prev );
172 visited.insert( p->next );
173 visited.insert( p->next->next );
174
175 visited.insert( q->prev );
176 visited.insert( q->prev->prev );
177 visited.insert( q->next );
178 visited.insert( q->next->next );
179
180 visited.insert( q );
181 }
182 }
183
184 p = p->next;
185 }
186 }
187
188 std::set<RESULTS> GetResults() const
189 {
190 return m_results;
191 }
192
193private:
194 std::set<RESULTS> m_results;
196};
197
198
200 m_board( aBoard ),
201 m_brdOutlinesValid( false ),
202 m_commit( aCommit ),
203 m_progressReporter( nullptr ),
204 m_maxError( ARC_HIGH_DEF ),
205 m_worstClearance( 0 )
206{
207 // To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
209}
210
211
213{
214}
215
216
218{
219 m_progressReporter = aReporter;
220 wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call "
221 "SetProgressReporter" ) );
222}
223
224
235bool ZONE_FILLER::Fill( const std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent )
236{
237 std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
238
239 std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill;
240 std::map<std::pair<ZONE*, PCB_LAYER_ID>, HASH_128> oldFillHashes;
241 std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>> isolatedIslandsMap;
242
243 std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
244
245 // Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable.
246 connectivity->ClearRatsnest();
247 connectivity->Build( m_board, m_progressReporter );
248
250
252 {
253 m_progressReporter->Report( aCheck ? _( "Checking zone fills..." )
254 : _( "Building zone fills..." ) );
255 m_progressReporter->SetMaxProgress( aZones.size() );
257 }
258
259 // The board outlines is used to clip solid areas inside the board (when outlines are valid)
262
263 // Update and cache zone bounding boxes and pad effective shapes so that we don't have to
264 // make them thread-safe.
265 //
266 for( ZONE* zone : m_board->Zones() )
267 zone->CacheBoundingBox();
268
269 for( FOOTPRINT* footprint : m_board->Footprints() )
270 {
271 for( PAD* pad : footprint->Pads() )
272 {
273 if( pad->IsDirty() )
274 {
275 pad->BuildEffectiveShapes();
276 pad->BuildEffectivePolygon( ERROR_OUTSIDE );
277 }
278 }
279
280 for( ZONE* zone : footprint->Zones() )
281 zone->CacheBoundingBox();
282
283 // Rules may depend on insideCourtyard() or other expressions
284 footprint->BuildCourtyardCaches();
285 footprint->BuildNetTieCache();
286 }
287
288 LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask();
289
290 auto findHighestPriorityZone =
291 [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, int netcode,
292 const std::function<bool( const ZONE* )>& testFn ) -> ZONE*
293 {
294 unsigned highestPriority = 0;
295 ZONE* highestPriorityZone = nullptr;
296
297 for( ZONE* zone : m_board->Zones() )
298 {
299 // Rule areas are not filled
300 if( zone->GetIsRuleArea() )
301 continue;
302
303 if( zone->GetAssignedPriority() < highestPriority )
304 continue;
305
306 if( !zone->IsOnLayer( itemLayer ) )
307 continue;
308
309 // Degenerate zones will cause trouble; skip them
310 if( zone->GetNumCorners() <= 2 )
311 continue;
312
313 if( !zone->GetBoundingBox().Intersects( bbox ) )
314 continue;
315
316 if( !testFn( zone ) )
317 continue;
318
319 // Prefer highest priority and matching netcode
320 if( zone->GetAssignedPriority() > highestPriority
321 || zone->GetNetCode() == netcode )
322 {
323 highestPriority = zone->GetAssignedPriority();
324 highestPriorityZone = zone;
325 }
326 }
327
328 return highestPriorityZone;
329 };
330
331 auto isInPourKeepoutArea =
332 [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, const VECTOR2I& testPoint ) -> bool
333 {
334 for( ZONE* zone : m_board->Zones() )
335 {
336 if( !zone->GetIsRuleArea() )
337 continue;
338
339 if( !zone->HasKeepoutParametersSet() )
340 continue;
341
342 if( !zone->GetDoNotAllowZoneFills() )
343 continue;
344
345 if( !zone->IsOnLayer( itemLayer ) )
346 continue;
347
348 // Degenerate zones will cause trouble; skip them
349 if( zone->GetNumCorners() <= 2 )
350 continue;
351
352 if( !zone->GetBoundingBox().Intersects( bbox ) )
353 continue;
354
355 if( zone->Outline()->Contains( testPoint ) )
356 return true;
357 }
358
359 return false;
360 };
361
362 // Determine state of conditional via flashing
363 // This is now done completely deterministically prior to filling due to the pathological
364 // case presented in https://gitlab.com/kicad/code/kicad/-/issues/12964.
365 for( PCB_TRACK* track : m_board->Tracks() )
366 {
367 if( track->Type() == PCB_VIA_T )
368 {
369 PCB_VIA* via = static_cast<PCB_VIA*>( track );
370
371 via->ClearZoneLayerOverrides();
372
373 if( !via->GetRemoveUnconnected() )
374 continue;
375
376 BOX2I bbox = via->GetBoundingBox();
377 VECTOR2I center = via->GetPosition();
378 int holeRadius = via->GetDrillValue() / 2 + 1;
379 int netcode = via->GetNetCode();
380 LSET layers = via->GetLayerSet() & boardCuMask;
381
382 // Checking if the via hole touches the zone outline
383 auto viaTestFn =
384 [&]( const ZONE* aZone ) -> bool
385 {
386 return aZone->Outline()->Contains( center, -1, holeRadius );
387 };
388
389 for( PCB_LAYER_ID layer : layers.Seq() )
390 {
391 if( !via->ConditionallyFlashed( layer ) )
392 continue;
393
394 if( isInPourKeepoutArea( bbox, layer, center ) )
395 {
396 via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
397 }
398 else
399 {
400 ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn );
401
402 if( zone && zone->GetNetCode() == via->GetNetCode() )
403 via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
404 else
405 via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
406 }
407 }
408 }
409 }
410
411 // Determine state of conditional pad flashing
412 for( FOOTPRINT* footprint : m_board->Footprints() )
413 {
414 for( PAD* pad : footprint->Pads() )
415 {
416 pad->ClearZoneLayerOverrides();
417
418 if( !pad->GetRemoveUnconnected() )
419 continue;
420
421 BOX2I bbox = pad->GetBoundingBox();
422 VECTOR2I center = pad->GetPosition();
423 int netcode = pad->GetNetCode();
424 LSET layers = pad->GetLayerSet() & boardCuMask;
425
426 auto padTestFn =
427 [&]( const ZONE* aZone ) -> bool
428 {
429 return aZone->Outline()->Contains( center );
430 };
431
432 for( PCB_LAYER_ID layer : layers.Seq() )
433 {
434 if( !pad->ConditionallyFlashed( layer ) )
435 continue;
436
437 if( isInPourKeepoutArea( bbox, layer, center ) )
438 {
439 pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
440 }
441 else
442 {
443 ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn );
444
445 if( zone && zone->GetNetCode() == pad->GetNetCode() )
446 pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
447 else
448 pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
449 }
450 }
451 }
452 }
453
454 for( ZONE* zone : aZones )
455 {
456 // Rule areas are not filled
457 if( zone->GetIsRuleArea() )
458 continue;
459
460 // Degenerate zones will cause trouble; skip them
461 if( zone->GetNumCorners() <= 2 )
462 continue;
463
464 if( m_commit )
465 m_commit->Modify( zone );
466
467 // calculate the hash value for filled areas. it will be used later to know if the
468 // current filled areas are up to date
469 for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
470 {
471 zone->BuildHashValue( layer );
472 oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );
473
474 // Add the zone to the list of zones to test or refill
475 toFill.emplace_back( std::make_pair( zone, layer ) );
476
477 isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS();
478 }
479
480 // Remove existing fill first to prevent drawing invalid polygons on some platforms
481 zone->UnFill();
482 }
483
484 auto check_fill_dependency =
485 [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool
486 {
487 // Check to see if we have to knock-out the filled areas of a higher-priority
488 // zone. If so we have to wait until said zone is filled before we can fill.
489
490 // If the other zone is already filled on the requested layer then we're
491 // good-to-go
492 if( aOtherZone->GetFillFlag( aLayer ) )
493 return false;
494
495 // Even if keepouts exclude copper pours, the exclusion is by outline rather than
496 // filled area, so we're good-to-go here too
497 if( aOtherZone->GetIsRuleArea() )
498 return false;
499
500 // If the other zone is never going to be filled then don't wait for it
501 if( aOtherZone->GetNumCorners() <= 2 )
502 return false;
503
504 // If the zones share no common layers
505 if( !aOtherZone->GetLayerSet().test( aLayer ) )
506 return false;
507
508 if( aZone->HigherPriority( aOtherZone ) )
509 return false;
510
511 // Same-net zones always use outlines to produce determinate results
512 if( aOtherZone->SameNet( aZone ) )
513 return false;
514
515 // A higher priority zone is found: if we intersect and it's not filled yet
516 // then we have to wait.
517 BOX2I inflatedBBox = aZone->GetBoundingBox();
518 inflatedBBox.Inflate( m_worstClearance );
519
520 if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) )
521 return false;
522
523 return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance );
524 };
525
526 auto fill_lambda =
527 [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
528 {
529 PCB_LAYER_ID layer = aFillItem.second;
530 ZONE* zone = aFillItem.first;
531 bool canFill = true;
532
533 // Check for any fill dependencies. If our zone needs to be clipped by
534 // another zone then we can't fill until that zone is filled.
535 for( ZONE* otherZone : aZones )
536 {
537 if( otherZone == zone )
538 continue;
539
540 if( check_fill_dependency( zone, layer, otherZone ) )
541 {
542 canFill = false;
543 break;
544 }
545 }
546
548 return 0;
549
550 if( !canFill )
551 return 0;
552
553 // Now we're ready to fill.
554 {
555 std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
556
557 if( !zoneLock.owns_lock() )
558 return 0;
559
560 SHAPE_POLY_SET fillPolys;
561
562 if( !fillSingleZone( zone, layer, fillPolys ) )
563 return 0;
564
565 zone->SetFilledPolysList( layer, fillPolys );
566 }
567
570
571 return 1;
572 };
573
574 auto tesselate_lambda =
575 [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
576 {
578 return 0;
579
580 PCB_LAYER_ID layer = aFillItem.second;
581 ZONE* zone = aFillItem.first;
582
583 {
584 std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
585
586 if( !zoneLock.owns_lock() )
587 return 0;
588
589 zone->CacheTriangulation( layer );
590 zone->SetFillFlag( layer, true );
591 }
592
593 return 1;
594 };
595
596 // Calculate the copper fills (NB: this is multi-threaded)
597 //
598 std::vector<std::pair<std::future<int>, int>> returns;
599 returns.reserve( toFill.size() );
600 size_t finished = 0;
601 bool cancelled = false;
602
604
605 for( const std::pair<ZONE*, PCB_LAYER_ID>& fillItem : toFill )
606 returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) );
607
608 while( !cancelled && finished != 2 * toFill.size() )
609 {
610 for( size_t ii = 0; ii < returns.size(); ++ii )
611 {
612 auto& ret = returns[ii];
613
614 if( ret.second > 1 )
615 continue;
616
617 std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
618
619 if( status == std::future_status::ready )
620 {
621 if( ret.first.get() ) // lambda completed
622 {
623 ++finished;
624 ret.second++; // go to next step
625 }
626
627 if( !cancelled )
628 {
629 // Queue the next step (will re-queue the existing step if it didn't complete)
630 if( ret.second == 0 )
631 returns[ii].first = tp.submit( fill_lambda, toFill[ii] );
632 else if( ret.second == 1 )
633 returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] );
634 }
635 }
636 }
637
638 std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) );
639
640
642 {
644
646 cancelled = true;
647 }
648 }
649
650 // Make sure that all futures have finished.
651 // This can happen when the user cancels the above operation
652 for( auto& ret : returns )
653 {
654 if( ret.first.valid() )
655 {
656 std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
657
658 while( status != std::future_status::ready )
659 {
662
663 status = ret.first.wait_for( std::chrono::milliseconds( 100 ) );
664 }
665 }
666 }
667
668 // Now update the connectivity to check for isolated copper islands
669 // (NB: FindIsolatedCopperIslands() is multi-threaded)
670 //
672 {
674 return false;
675
677 m_progressReporter->Report( _( "Removing isolated copper islands..." ) );
679 }
680
681 connectivity->SetProgressReporter( m_progressReporter );
682 connectivity->FillIsolatedIslandsMap( isolatedIslandsMap );
683 connectivity->SetProgressReporter( nullptr );
684
686 return false;
687
688 for( ZONE* zone : aZones )
689 {
690 // Keepout zones are not filled
691 if( zone->GetIsRuleArea() )
692 continue;
693
694 zone->SetIsFilled( true );
695 }
696
697 // Now remove isolated copper islands according to the isolated islands strategy assigned
698 // by the user (always, never, below-certain-size).
699 //
700 for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap )
701 {
702 // If *all* the polygons are islands, do not remove any of them
703 bool allIslands = true;
704
705 for( const auto& [ layer, layerIslands ] : zoneIslands )
706 {
707 if( layerIslands.m_IsolatedOutlines.size()
708 != static_cast<size_t>( zone->GetFilledPolysList( layer )->OutlineCount() ) )
709 {
710 allIslands = false;
711 break;
712 }
713 }
714
715 if( allIslands )
716 continue;
717
718 for( const auto& [ layer, layerIslands ] : zoneIslands )
719 {
720 if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
721 continue;
722
723 if( layerIslands.m_IsolatedOutlines.empty() )
724 continue;
725
726 std::vector<int> islands = layerIslands.m_IsolatedOutlines;
727
728 // The list of polygons to delete must be explored from last to first in list,
729 // to allow deleting a polygon from list without breaking the remaining of the list
730 std::sort( islands.begin(), islands.end(), std::greater<int>() );
731
732 std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer );
733 long long int minArea = zone->GetMinIslandArea();
734 ISLAND_REMOVAL_MODE mode = zone->GetIslandRemovalMode();
735
736 for( int idx : islands )
737 {
738 SHAPE_LINE_CHAIN& outline = poly->Outline( idx );
739
740 if( mode == ISLAND_REMOVAL_MODE::ALWAYS )
741 poly->DeletePolygonAndTriangulationData( idx, false );
742 else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea )
743 poly->DeletePolygonAndTriangulationData( idx, false );
744 else
745 zone->SetIsIsland( layer, idx );
746 }
747
748 poly->UpdateTriangulationDataHash();
749 zone->CalculateFilledArea();
750
752 return false;
753 }
754 }
755
756 // Now remove islands which are either outside the board edge or fail to meet the minimum
757 // area requirements
758 using island_check_return = std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, int>>;
759
760 std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, double>> polys_to_check;
761
762 // rough estimate to save re-allocation time
763 polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() );
764
765 for( ZONE* zone : aZones )
766 {
767 // Don't check for connections on layers that only exist in the zone but
768 // were disabled in the board
769 BOARD* board = zone->GetBoard();
770 LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask() & board->GetEnabledLayers();
771
772 // Min-thickness is the web thickness. On the other hand, a blob min-thickness by
773 // min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
774 // arbitrarily choose "at least 3X the area".
775 double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 3;
776
777 for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() )
778 {
780 continue;
781
782 polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea );
783 }
784 }
785
786 auto island_lambda =
787 [&]( int aStart, int aEnd ) -> island_check_return
788 {
789 island_check_return retval;
790
791 for( int ii = aStart; ii < aEnd && !cancelled; ++ii )
792 {
793 auto [poly, minArea] = polys_to_check[ii];
794
795 for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- )
796 {
797 SHAPE_POLY_SET island;
798 SHAPE_POLY_SET intersection;
799 const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front();
800 double island_area = test_poly.Area();
801
802 if( island_area < minArea )
803 continue;
804
805
806 island.AddOutline( test_poly );
807 intersection.BooleanIntersection( m_boardOutline, island );
808
809 // Nominally, all of these areas should be either inside or outside the
810 // board outline. So this test should be able to just compare areas (if
811 // they are equal, you are inside). But in practice, we sometimes have
812 // slight overlap at the edges, so testing against half-size area acts as
813 // a fail-safe.
814 if( intersection.Area() < island_area / 2.0 )
815 retval.emplace_back( poly, jj );
816 }
817 }
818
819 return retval;
820 };
821
822 auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda );
823 cancelled = false;
824
825 // Allow island removal threads to finish
826 for( size_t ii = 0; ii < island_returns.size(); ++ii )
827 {
828 std::future<island_check_return>& ret = island_returns[ii];
829
830 if( ret.valid() )
831 {
832 std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) );
833
834 while( status != std::future_status::ready )
835 {
837 {
839
841 cancelled = true;
842 }
843
844 status = ret.wait_for( std::chrono::milliseconds( 100 ) );
845 }
846 }
847 }
848
849 if( cancelled )
850 return false;
851
852 for( size_t ii = 0; ii < island_returns.size(); ++ii )
853 {
854 std::future<island_check_return>& ret = island_returns[ii];
855
856 if( ret.valid() )
857 {
858 for( auto& action_item : ret.get() )
859 action_item.first->DeletePolygonAndTriangulationData( action_item.second, true );
860 }
861 }
862
863 for( ZONE* zone : aZones )
864 zone->CalculateFilledArea();
865
866
867 if( aCheck )
868 {
869 bool outOfDate = false;
870
871 for( ZONE* zone : aZones )
872 {
873 // Keepout zones are not filled
874 if( zone->GetIsRuleArea() )
875 continue;
876
877 for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
878 {
879 zone->BuildHashValue( layer );
880
881 if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) )
882 outOfDate = true;
883 }
884 }
885
886 if( ( m_board->GetProject()
888 {
889 KIDIALOG dlg( aParent, _( "Prototype zone fill enabled. Disable setting and refill?" ),
890 _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
891 dlg.SetOKCancelLabels( _( "Disable and refill" ), _( "Continue without Refill" ) );
892 dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
893
894 if( dlg.ShowModal() == wxID_OK )
895 {
897 }
898 else if( !outOfDate )
899 {
900 return false;
901 }
902 }
903
904 if( outOfDate )
905 {
906 KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ),
907 _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
908 dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
909 dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
910
911 if( dlg.ShowModal() == wxID_CANCEL )
912 return false;
913 }
914 else
915 {
916 // No need to commit something that hasn't changed (and committing will set
917 // the modified flag).
918 return false;
919 }
920 }
921
923 {
925 return false;
926
929 }
930
931 return true;
932}
933
934
939void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles )
940{
941 if( aPad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
942 {
943 SHAPE_POLY_SET poly;
944 aPad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
945
946 // the pad shape in zone can be its convex hull or the shape itself
948 {
949 std::vector<VECTOR2I> convex_hull;
950 BuildConvexHull( convex_hull, poly );
951
952 aHoles.NewOutline();
953
954 for( const VECTOR2I& pt : convex_hull )
955 aHoles.Append( pt );
956 }
957 else
958 aHoles.Append( poly );
959 }
960 else
961 {
962 aPad->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
963 }
964}
965
966
970void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
971{
972 aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );
973}
974
975
980void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap,
981 bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles )
982{
983 switch( aItem->Type() )
984 {
985 case PCB_FIELD_T:
986 case PCB_TEXT_T:
987 {
988 PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );
989
990 if( text->IsVisible() )
991 {
992 if( text->IsKnockout() )
993 {
994 // Knockout text should only leave holes where the text is, not where the copper fill
995 // around it would be.
996 PCB_TEXT textCopy = *text;
997 textCopy.SetIsKnockout( false );
998 textCopy.TransformTextToPolySet( aHoles, 0, m_maxError, ERROR_INSIDE );
999 }
1000 else
1001 {
1002 text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
1003 }
1004 }
1005
1006 break;
1007 }
1008
1009 case PCB_TEXTBOX_T:
1010 case PCB_TABLE_T:
1011 case PCB_SHAPE_T:
1012 case PCB_TARGET_T:
1013 aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE,
1014 aIgnoreLineWidth );
1015 break;
1016
1017 case PCB_DIM_ALIGNED_T:
1018 case PCB_DIM_LEADER_T:
1019 case PCB_DIM_CENTER_T:
1020 case PCB_DIM_RADIAL_T:
1022 {
1023 PCB_DIMENSION_BASE* dim = static_cast<PCB_DIMENSION_BASE*>( aItem );
1024
1025 dim->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, false );
1026 dim->PCB_TEXT::TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
1027 break;
1028 }
1029
1030 default:
1031 break;
1032 }
1033}
1034
1035
1041 SHAPE_POLY_SET& aFill,
1042 std::vector<PAD*>& aThermalConnectionPads,
1043 std::vector<PAD*>& aNoConnectionPads )
1044{
1046 ZONE_CONNECTION connection;
1047 DRC_CONSTRAINT constraint;
1048 int padClearance;
1049 std::shared_ptr<SHAPE> padShape;
1050 int holeClearance;
1051 SHAPE_POLY_SET holes;
1052
1053 for( FOOTPRINT* footprint : m_board->Footprints() )
1054 {
1055 for( PAD* pad : footprint->Pads() )
1056 {
1057 BOX2I padBBox = pad->GetBoundingBox();
1058 padBBox.Inflate( m_worstClearance );
1059
1060 if( !padBBox.Intersects( aZone->GetBoundingBox() ) )
1061 continue;
1062
1063 bool noConnection = pad->GetNetCode() != aZone->GetNetCode();
1064
1065 if( !aZone->IsTeardropArea() )
1066 {
1067 if( aZone->GetNetCode() == 0
1068 || pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
1069 {
1070 noConnection = true;
1071 }
1072 }
1073
1074 if( noConnection )
1075 {
1076 // collect these for knockout in buildCopperItemClearances()
1077 aNoConnectionPads.push_back( pad );
1078 continue;
1079 }
1080
1081 if( aZone->IsTeardropArea() )
1082 {
1083 connection = ZONE_CONNECTION::FULL;
1084 }
1085 else
1086 {
1087 constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer );
1088 connection = constraint.m_ZoneConnection;
1089 }
1090
1091 if( connection == ZONE_CONNECTION::THERMAL && !pad->CanFlashLayer( aLayer ) )
1092 connection = ZONE_CONNECTION::NONE;
1093
1094 switch( connection )
1095 {
1096 case ZONE_CONNECTION::THERMAL:
1097 padShape = pad->GetEffectiveShape( aLayer, FLASHING::ALWAYS_FLASHED );
1098
1099 if( aFill.Collide( padShape.get(), 0 ) )
1100 {
1101 constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad,
1102 aZone, aLayer );
1103 padClearance = constraint.GetValue().Min();
1104
1105 aThermalConnectionPads.push_back( pad );
1106 addKnockout( pad, aLayer, padClearance, holes );
1107 }
1108
1109 break;
1110
1111 case ZONE_CONNECTION::NONE:
1112 constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad,
1113 aZone, aLayer );
1114
1115 if( constraint.GetValue().Min() > aZone->GetLocalClearance().value() )
1116 padClearance = constraint.GetValue().Min();
1117 else
1118 padClearance = aZone->GetLocalClearance().value();
1119
1120 if( pad->FlashLayer( aLayer ) )
1121 {
1122 addKnockout( pad, aLayer, padClearance, holes );
1123 }
1124 else if( pad->GetDrillSize().x > 0 )
1125 {
1126 constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
1127 pad, aZone, aLayer );
1128
1129 if( constraint.GetValue().Min() > padClearance )
1130 holeClearance = constraint.GetValue().Min();
1131 else
1132 holeClearance = padClearance;
1133
1134 pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE );
1135 }
1136
1137 break;
1138
1139 default:
1140 // No knockout
1141 continue;
1142 }
1143 }
1144 }
1145
1146 aFill.BooleanSubtract( holes );
1147}
1148
1149
1155 const std::vector<PAD*>& aNoConnectionPads,
1156 SHAPE_POLY_SET& aHoles )
1157{
1159 long ticker = 0;
1160
1161 auto checkForCancel =
1162 [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
1163 {
1164 return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
1165 };
1166
1167 // A small extra clearance to be sure actual track clearances are not smaller than
1168 // requested clearance due to many approximations in calculations, like arc to segment
1169 // approx, rounding issues, etc.
1170 BOX2I zone_boundingbox = aZone->GetBoundingBox();
1172
1173 // Items outside the zone bounding box are skipped, so it needs to be inflated by the
1174 // largest clearance value found in the netclasses and rules
1175 zone_boundingbox.Inflate( m_worstClearance + extra_margin );
1176
1177 auto evalRulesForItems =
1178 [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b,
1179 PCB_LAYER_ID aEvalLayer ) -> int
1180 {
1181 DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );
1182
1183 if( c.IsNull() )
1184 return -1;
1185 else
1186 return c.GetValue().Min();
1187 };
1188
1189 // Add non-connected pad clearances
1190 //
1191 auto knockoutPadClearance =
1192 [&]( PAD* aPad )
1193 {
1194 int init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
1195 int gap = init_gap;
1196 bool hasHole = aPad->GetDrillSize().x > 0;
1197 bool flashLayer = aPad->FlashLayer( aLayer );
1198 bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;
1199
1200 if( flashLayer || platedHole )
1201 {
1202 gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
1203 aZone, aPad, aLayer ) );
1204 }
1205
1206 if( flashLayer && gap >= 0 )
1207 addKnockout( aPad, aLayer, gap + extra_margin, aHoles );
1208
1209 if( hasHole )
1210 {
1211 // NPTH do not need copper clearance gaps to their holes
1212 if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
1213 gap = init_gap;
1214
1215 gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
1216 aZone, aPad, aLayer ) );
1217
1218 gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
1219 aZone, aPad, aLayer ) );
1220
1221 if( gap >= 0 )
1222 addHoleKnockout( aPad, gap + extra_margin, aHoles );
1223 }
1224 };
1225
1226 for( PAD* pad : aNoConnectionPads )
1227 {
1228 if( checkForCancel( m_progressReporter ) )
1229 return;
1230
1231 knockoutPadClearance( pad );
1232 }
1233
1234 // Add non-connected track clearances
1235 //
1236 auto knockoutTrackClearance =
1237 [&]( PCB_TRACK* aTrack )
1238 {
1239 if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) )
1240 {
1241 bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode();
1242
1243 if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
1244 sameNet = false;
1245
1246 int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
1247 aZone, aTrack, aLayer );
1248
1249 if( aTrack->Type() == PCB_VIA_T )
1250 {
1251 PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
1252
1253 if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
1254 sameNet = false;
1255 }
1256
1257 if( !sameNet )
1258 {
1259 gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
1260 aZone, aTrack, aLayer ) );
1261 }
1262
1263 if( aTrack->Type() == PCB_VIA_T )
1264 {
1265 PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
1266
1267 if( via->FlashLayer( aLayer ) && gap > 0 )
1268 {
1269 via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
1271 }
1272
1273 gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
1274 aZone, via, aLayer ) );
1275
1276 if( !sameNet )
1277 {
1278 gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
1279 aZone, via, aLayer ) );
1280 }
1281
1282 if( gap >= 0 )
1283 {
1284 int radius = via->GetDrillValue() / 2;
1285
1286 TransformCircleToPolygon( aHoles, via->GetPosition(),
1287 radius + gap + extra_margin,
1289 }
1290 }
1291 else
1292 {
1293 if( gap >= 0 )
1294 {
1295 aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
1297 }
1298 }
1299 }
1300 };
1301
1302 for( PCB_TRACK* track : m_board->Tracks() )
1303 {
1304 if( !track->IsOnLayer( aLayer ) )
1305 continue;
1306
1307 if( checkForCancel( m_progressReporter ) )
1308 return;
1309
1310 knockoutTrackClearance( track );
1311 }
1312
1313 // Add graphic item clearances.
1314 //
1315 auto knockoutGraphicClearance =
1316 [&]( BOARD_ITEM* aItem )
1317 {
1318 int shapeNet = -1;
1319
1320 if( aItem->Type() == PCB_SHAPE_T )
1321 shapeNet = static_cast<PCB_SHAPE*>( aItem )->GetNetCode();
1322
1323 bool sameNet = shapeNet == aZone->GetNetCode();
1324
1325 if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
1326 sameNet = false;
1327
1328 // A item on the Edge_Cuts or Margin is always seen as on any layer:
1329 if( aItem->IsOnLayer( aLayer )
1330 || aItem->IsOnLayer( Edge_Cuts )
1331 || aItem->IsOnLayer( Margin ) )
1332 {
1333 if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
1334 {
1335 bool ignoreLineWidths = false;
1336 int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
1337 aZone, aItem, aLayer );
1338
1339 if( aItem->IsOnLayer( aLayer ) && !sameNet )
1340 {
1341 gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
1342 aZone, aItem, aLayer ) );
1343 }
1344 else if( aItem->IsOnLayer( Edge_Cuts ) )
1345 {
1346 gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
1347 aZone, aItem, aLayer ) );
1348 ignoreLineWidths = true;
1349 }
1350 else if( aItem->IsOnLayer( Margin ) )
1351 {
1352 gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
1353 aZone, aItem, aLayer ) );
1354 }
1355
1356 if( gap >= 0 )
1357 {
1358 gap += extra_margin;
1359 addKnockout( aItem, aLayer, gap, ignoreLineWidths, aHoles );
1360 }
1361 }
1362 }
1363 };
1364
1365 auto knockoutCourtyardClearance =
1366 [&]( FOOTPRINT* aFootprint )
1367 {
1368 if( aFootprint->GetBoundingBox().Intersects( zone_boundingbox ) )
1369 {
1370 int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone,
1371 aFootprint, aLayer );
1372
1373 if( gap == 0 )
1374 {
1375 aHoles.Append( aFootprint->GetCourtyard( aLayer ) );
1376 }
1377 else if( gap > 0 )
1378 {
1379 SHAPE_POLY_SET hole = aFootprint->GetCourtyard( aLayer );
1380 hole.Inflate( gap, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
1381 aHoles.Append( hole );
1382 }
1383 }
1384 };
1385
1386 for( FOOTPRINT* footprint : m_board->Footprints() )
1387 {
1388 knockoutCourtyardClearance( footprint );
1389 knockoutGraphicClearance( &footprint->Reference() );
1390 knockoutGraphicClearance( &footprint->Value() );
1391
1392 std::set<PAD*> allowedNetTiePads;
1393
1394 // Don't knock out holes for graphic items which implement a net-tie to the zone's net
1395 // on the layer being filled.
1396 if( footprint->IsNetTie() )
1397 {
1398 for( PAD* pad : footprint->Pads() )
1399 {
1400 bool sameNet = pad->GetNetCode() == aZone->GetNetCode();
1401
1402 if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
1403 sameNet = false;
1404
1405 if( sameNet )
1406 {
1407 if( pad->IsOnLayer( aLayer ) )
1408 allowedNetTiePads.insert( pad );
1409
1410 for( PAD* other : footprint->GetNetTiePads( pad ) )
1411 {
1412 if( other->IsOnLayer( aLayer ) )
1413 allowedNetTiePads.insert( other );
1414 }
1415 }
1416 }
1417 }
1418
1419 for( BOARD_ITEM* item : footprint->GraphicalItems() )
1420 {
1421 if( checkForCancel( m_progressReporter ) )
1422 return;
1423
1424 BOX2I itemBBox = item->GetBoundingBox();
1425
1426 if( !zone_boundingbox.Intersects( itemBBox ) )
1427 continue;
1428
1429 bool skipItem = false;
1430
1431 if( item->IsOnLayer( aLayer ) )
1432 {
1433 std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape();
1434
1435 for( PAD* pad : allowedNetTiePads )
1436 {
1437 if( pad->GetBoundingBox().Intersects( itemBBox )
1438 && pad->GetEffectiveShape( aLayer )->Collide( itemShape.get() ) )
1439 {
1440 skipItem = true;
1441 break;
1442 }
1443 }
1444 }
1445
1446 if( !skipItem )
1447 knockoutGraphicClearance( item );
1448 }
1449 }
1450
1451 for( BOARD_ITEM* item : m_board->Drawings() )
1452 {
1453 if( checkForCancel( m_progressReporter ) )
1454 return;
1455
1456 knockoutGraphicClearance( item );
1457 }
1458
1459 // Add non-connected zone clearances
1460 //
1461 auto knockoutZoneClearance =
1462 [&]( ZONE* aKnockout )
1463 {
1464 // If the zones share no common layers
1465 if( !aKnockout->GetLayerSet().test( aLayer ) )
1466 return;
1467
1468 if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) )
1469 {
1470 if( aKnockout->GetIsRuleArea() )
1471 {
1472 // Keepouts use outline with no clearance
1473 aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError,
1474 ERROR_OUTSIDE, nullptr );
1475 }
1476 else
1477 {
1478 int gap = std::max( 0, evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
1479 aZone, aKnockout, aLayer ) );
1480
1481 gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
1482 aZone, aKnockout, aLayer ) );
1483
1484 SHAPE_POLY_SET poly;
1485 aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin,
1487 aHoles.Append( poly );
1488 }
1489 }
1490 };
1491
1492 for( ZONE* otherZone : m_board->Zones() )
1493 {
1494 if( checkForCancel( m_progressReporter ) )
1495 return;
1496
1497 // Negative clearance permits zones to short
1498 if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 )
1499 continue;
1500
1501 if( otherZone->GetIsRuleArea() )
1502 {
1503 if( otherZone->GetDoNotAllowZoneFills() && !aZone->IsTeardropArea() )
1504 knockoutZoneClearance( otherZone );
1505 }
1506 else if( otherZone->HigherPriority( aZone ) )
1507 {
1508 if( !otherZone->SameNet( aZone ) )
1509 knockoutZoneClearance( otherZone );
1510 }
1511 }
1512
1513 for( FOOTPRINT* footprint : m_board->Footprints() )
1514 {
1515 for( ZONE* otherZone : footprint->Zones() )
1516 {
1517 if( checkForCancel( m_progressReporter ) )
1518 return;
1519
1520 if( otherZone->GetIsRuleArea() )
1521 {
1522 if( otherZone->GetDoNotAllowZoneFills() && !aZone->IsTeardropArea() )
1523 knockoutZoneClearance( otherZone );
1524 }
1525 else if( otherZone->HigherPriority( aZone ) )
1526 {
1527 if( !otherZone->SameNet( aZone ) )
1528 knockoutZoneClearance( otherZone );
1529 }
1530 }
1531 }
1532
1533 aHoles.Simplify();
1534}
1535
1536
1542 SHAPE_POLY_SET& aRawFill )
1543{
1544 BOX2I zoneBBox = aZone->GetBoundingBox();
1545
1546 auto knockoutZoneOutline =
1547 [&]( ZONE* aKnockout )
1548 {
1549 // If the zones share no common layers
1550 if( !aKnockout->GetLayerSet().test( aLayer ) )
1551 return;
1552
1553 if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) )
1554 {
1555 // Processing of arc shapes in zones is not yet supported because Clipper
1556 // can't do boolean operations on them. The poly outline must be converted to
1557 // segments first.
1558 SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation();
1559 outline.ClearArcs();
1560
1561 aRawFill.BooleanSubtract( outline );
1562 }
1563 };
1564
1565 for( ZONE* otherZone : m_board->Zones() )
1566 {
1567 // Don't use the `HigherPriority()` check here because we _only_ want to knock out zones
1568 // with explicitly higher priorities, not those with equal priorities
1569 if( otherZone->SameNet( aZone )
1570 && otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() )
1571 {
1572 // Do not remove teardrop area: it is not useful and not good
1573 if( !otherZone->IsTeardropArea() )
1574 knockoutZoneOutline( otherZone );
1575 }
1576 }
1577
1578 for( FOOTPRINT* footprint : m_board->Footprints() )
1579 {
1580 for( ZONE* otherZone : footprint->Zones() )
1581 {
1582 if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) )
1583 {
1584 // Do not remove teardrop area: it is not useful and not good
1585 if( !otherZone->IsTeardropArea() )
1586 knockoutZoneOutline( otherZone );
1587 }
1588 }
1589 }
1590}
1591
1592
1593void ZONE_FILLER::connect_nearby_polys( SHAPE_POLY_SET& aPolys, double aDistance )
1594{
1595 if( aPolys.OutlineCount() < 1 )
1596 return;
1597
1598 VERTEX_CONNECTOR vs( aPolys.BBoxFromCaches(), aPolys, aDistance );
1599
1600 vs.FindResults();
1601
1602 // This cannot be a reference because we need to do the comparison below while
1603 // changing the values
1604 std::map<int, std::vector<std::pair<int, VECTOR2I>>> insertion_points;
1605
1606 for( const RESULTS& result : vs.GetResults() )
1607 {
1608 SHAPE_LINE_CHAIN& line1 = aPolys.Outline( result.m_outline1 );
1609 SHAPE_LINE_CHAIN& line2 = aPolys.Outline( result.m_outline2 );
1610
1611 VECTOR2I pt1 = line1.CPoint( result.m_vertex1 );
1612 VECTOR2I pt2 = line2.CPoint( result.m_vertex2 );
1613
1614 // We want to insert the existing point first so that we can place the new point
1615 // between the two points at the same location.
1616 insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt1 } );
1617 insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt2 } );
1618 }
1619
1620 for( auto& [outline, vertices] : insertion_points )
1621 {
1622 SHAPE_LINE_CHAIN& line = aPolys.Outline( outline );
1623
1624 // Stable sort here because we want to make sure that we are inserting pt1 first and
1625 // pt2 second but still sorting the rest of the indices from highest to lowest.
1626 // This allows us to insert into the existing polygon without modifying the future
1627 // insertion points.
1628 std::stable_sort( vertices.begin(), vertices.end(),
1629 []( const std::pair<int, VECTOR2I>& a, const std::pair<int, VECTOR2I>& b )
1630 {
1631 return a.first > b.first;
1632 } );
1633
1634 for( const auto& [vertex, pt] : vertices )
1635 line.Insert( vertex + 1, pt ); // +1 here because we want to insert after the existing point
1636 }
1637}
1638
1639
1640#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
1641 { if( m_debugZoneFiller && aDebugLayer == b ) \
1642 { \
1643 m_board->SetLayerName( b, c ); \
1644 SHAPE_POLY_SET d = a; \
1645 d.Fracture(); \
1646 aFillPolys = d; \
1647 return false; \
1648 } \
1649 }
1650
1651
1652/*
1653 * Note that aSmoothedOutline is larger than the zone where it intersects with other, same-net
1654 * zones. This is to prevent the re-inflation post min-width trimming from createing divots
1655 * between adjacent zones. The final aMaxExtents trimming will remove these areas from the final
1656 * fill.
1657 */
1658bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer,
1659 const SHAPE_POLY_SET& aSmoothedOutline,
1660 const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys )
1661{
1663
1664 // Features which are min_width should survive pruning; features that are *less* than
1665 // min_width should not. Therefore we subtract epsilon from the min_width when
1666 // deflating/inflating.
1667 int half_min_width = aZone->GetMinThickness() / 2;
1668 int epsilon = pcbIUScale.mmToIU( 0.001 );
1669
1670 // Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
1671 // issues, but inflate is tricky as it can create excessively long and narrow spikes for
1672 // acute angles.
1673 // ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
1674 // CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
1675 // circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
1676 // It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
1677 // as a "less-safe" option.
1678 // ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
1679 // CHAMFER_ALL_CORNERS improves the segment count.
1680 CORNER_STRATEGY fastCornerStrategy = CORNER_STRATEGY::CHAMFER_ALL_CORNERS;
1681 CORNER_STRATEGY cornerStrategy = CORNER_STRATEGY::ROUND_ALL_CORNERS;
1682
1683 std::vector<PAD*> thermalConnectionPads;
1684 std::vector<PAD*> noConnectionPads;
1685 std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
1686 SHAPE_POLY_SET clearanceHoles;
1687
1688 aFillPolys = aSmoothedOutline;
1689 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );
1690
1692 return false;
1693
1694 /* -------------------------------------------------------------------------------------
1695 * Knockout thermal reliefs.
1696 */
1697
1698 knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads );
1699 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );
1700
1702 return false;
1703
1704 /* -------------------------------------------------------------------------------------
1705 * Knockout electrical clearances.
1706 */
1707
1708 buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles );
1709 DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );
1710
1712 return false;
1713
1714 /* -------------------------------------------------------------------------------------
1715 * Add thermal relief spokes.
1716 */
1717
1718 buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );
1719
1721 return false;
1722
1723 // Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
1724 // because the "real" subtract-clearance-holes has to be done after the spokes are added.
1725 static const bool USE_BBOX_CACHES = true;
1726 SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation();
1727 testAreas.BooleanSubtract( clearanceHoles );
1728 DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );
1729
1730 // Prune features that don't meet minimum-width criteria
1731 if( half_min_width - epsilon > epsilon )
1732 {
1733 testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
1734 DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );
1735
1736 testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
1737 DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) );
1738 }
1739
1741 return false;
1742
1743 // Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
1744 // things up a bit.
1745 testAreas.BuildBBoxCaches();
1746 int interval = 0;
1747
1748 SHAPE_POLY_SET debugSpokes;
1749
1750 for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
1751 {
1752 const VECTOR2I& testPt = spoke.CPoint( 3 );
1753
1754 // Hit-test against zone body
1755 if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
1756 {
1757 if( m_debugZoneFiller )
1758 debugSpokes.AddOutline( spoke );
1759
1760 aFillPolys.AddOutline( spoke );
1761 continue;
1762 }
1763
1764 if( interval++ > 400 )
1765 {
1767 return false;
1768
1769 interval = 0;
1770 }
1771
1772 // Hit-test against other spokes
1773 for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
1774 {
1775 // Hit test in both directions to avoid interactions with round-off errors.
1776 // (See https://gitlab.com/kicad/code/kicad/-/issues/13316.)
1777 if( &other != &spoke
1778 && other.PointInside( testPt, 1, USE_BBOX_CACHES )
1779 && spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) )
1780 {
1781 if( m_debugZoneFiller )
1782 debugSpokes.AddOutline( spoke );
1783
1784 aFillPolys.AddOutline( spoke );
1785 break;
1786 }
1787 }
1788 }
1789
1790 DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );
1791
1793 return false;
1794
1795 aFillPolys.BooleanSubtract( clearanceHoles );
1796 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );
1797
1798 /* -------------------------------------------------------------------------------------
1799 * Prune features that don't meet minimum-width criteria
1800 */
1801
1802 if( half_min_width - epsilon > epsilon )
1803 aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
1804
1805 // Min-thickness is the web thickness. On the other hand, a blob min-thickness by
1806 // min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
1807 // arbitrarily choose "at least 2X min-thickness on one axis". (Since we're doing this
1808 // during the deflated state, that means we test for "at least min-thickness".)
1809 for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- )
1810 {
1811 std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii );
1812 BOX2I islandExtents;
1813
1814 for( const VECTOR2I& pt : island.front().CPoints() )
1815 {
1816 islandExtents.Merge( pt );
1817
1818 if( islandExtents.GetSizeMax() > aZone->GetMinThickness() )
1819 break;
1820 }
1821
1822 if( islandExtents.GetSizeMax() < aZone->GetMinThickness() )
1823 aFillPolys.DeletePolygon( ii );
1824 }
1825
1826 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );
1827
1829 return false;
1830
1831 /* -------------------------------------------------------------------------------------
1832 * Process the hatch pattern (note that we do this while deflated)
1833 */
1834
1835 if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN
1836 && ( !m_board->GetProject()
1838 {
1839 if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) )
1840 return false;
1841 }
1842 else
1843 {
1844 /* ---------------------------------------------------------------------------------
1845 * Connect nearby polygons with zero-width lines in order to ensure correct
1846 * re-inflation.
1847 */
1848 aFillPolys.Fracture();
1849 connect_nearby_polys( aFillPolys, aZone->GetMinThickness() );
1850
1851 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In10_Cu, wxT( "connected-nearby-polys" ) );
1852 }
1853
1855 return false;
1856
1857 /* -------------------------------------------------------------------------------------
1858 * Finish minimum-width pruning by re-inflating
1859 */
1860
1861 if( half_min_width - epsilon > epsilon )
1862 aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true );
1863
1864 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );
1865
1866 /* -------------------------------------------------------------------------------------
1867 * Ensure additive changes (thermal stubs and inflating acute corners) do not add copper
1868 * outside the zone boundary, inside the clearance holes, or between otherwise isolated
1869 * islands
1870 */
1871
1872 for( PAD* pad : thermalConnectionPads )
1873 addHoleKnockout( pad, 0, clearanceHoles );
1874
1875 aFillPolys.BooleanIntersection( aMaxExtents );
1876 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) );
1877 aFillPolys.BooleanSubtract( clearanceHoles );
1878 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );
1879
1880 /* -------------------------------------------------------------------------------------
1881 * Lastly give any same-net but higher-priority zones control over their own area.
1882 */
1883
1884 subtractHigherPriorityZones( aZone, aLayer, aFillPolys );
1885 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );
1886
1887 aFillPolys.Fracture();
1888 return true;
1889}
1890
1891
1893 const SHAPE_POLY_SET& aSmoothedOutline,
1894 SHAPE_POLY_SET& aFillPolys )
1895{
1896 BOX2I zone_boundingbox = aZone->GetBoundingBox();
1897 SHAPE_POLY_SET clearanceHoles;
1898 long ticker = 0;
1899
1900 auto checkForCancel =
1901 [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
1902 {
1903 return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
1904 };
1905
1906 auto knockoutGraphicItem =
1907 [&]( BOARD_ITEM* aItem )
1908 {
1909 if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer )
1910 && aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
1911 {
1912 addKnockout( aItem, aLayer, 0, true, clearanceHoles );
1913 }
1914 };
1915
1916 for( FOOTPRINT* footprint : m_board->Footprints() )
1917 {
1918 if( checkForCancel( m_progressReporter ) )
1919 return false;
1920
1921 knockoutGraphicItem( &footprint->Reference() );
1922 knockoutGraphicItem( &footprint->Value() );
1923
1924 for( BOARD_ITEM* item : footprint->GraphicalItems() )
1925 knockoutGraphicItem( item );
1926 }
1927
1928 for( BOARD_ITEM* item : m_board->Drawings() )
1929 {
1930 if( checkForCancel( m_progressReporter ) )
1931 return false;
1932
1933 knockoutGraphicItem( item );
1934 }
1935
1936 aFillPolys = aSmoothedOutline;
1937 aFillPolys.BooleanSubtract( clearanceHoles );
1938
1939 auto subtractKeepout =
1940 [&]( ZONE* candidate )
1941 {
1942 if( !candidate->GetIsRuleArea() )
1943 return;
1944
1945 if( !candidate->HasKeepoutParametersSet() )
1946 return;
1947
1948 if( candidate->GetDoNotAllowZoneFills() && candidate->IsOnLayer( aLayer ) )
1949 {
1950 if( candidate->GetBoundingBox().Intersects( zone_boundingbox ) )
1951 {
1952 if( candidate->Outline()->ArcCount() == 0 )
1953 {
1954 aFillPolys.BooleanSubtract( *candidate->Outline() );
1955 }
1956 else
1957 {
1958 SHAPE_POLY_SET keepoutOutline( *candidate->Outline() );
1959 keepoutOutline.ClearArcs();
1960 aFillPolys.BooleanSubtract( keepoutOutline );
1961 }
1962 }
1963 }
1964 };
1965
1966 for( ZONE* keepout : m_board->Zones() )
1967 {
1968 if( checkForCancel( m_progressReporter ) )
1969 return false;
1970
1971 subtractKeepout( keepout );
1972 }
1973
1974 for( FOOTPRINT* footprint : m_board->Footprints() )
1975 {
1976 if( checkForCancel( m_progressReporter ) )
1977 return false;
1978
1979 for( ZONE* keepout : footprint->Zones() )
1980 subtractKeepout( keepout );
1981 }
1982
1983 // Features which are min_width should survive pruning; features that are *less* than
1984 // min_width should not. Therefore we subtract epsilon from the min_width when
1985 // deflating/inflating.
1986 int half_min_width = aZone->GetMinThickness() / 2;
1987 int epsilon = pcbIUScale.mmToIU( 0.001 );
1988
1989 aFillPolys.Deflate( half_min_width - epsilon, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, m_maxError );
1990
1991 // Remove the non filled areas due to the hatch pattern
1992 if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
1993 {
1994 if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) )
1995 return false;
1996 }
1997
1998 // Re-inflate after pruning of areas that don't meet minimum-width criteria
1999 if( half_min_width - epsilon > epsilon )
2000 aFillPolys.Inflate( half_min_width - epsilon, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
2001
2002 aFillPolys.Fracture();
2003 return true;
2004}
2005
2006
2007/*
2008 * Build the filled solid areas data from real outlines (stored in m_Poly)
2009 * The solid areas can be more than one on copper layers, and do not have holes
2010 * ( holes are linked by overlapping segments to the main outline)
2011 */
2013{
2014 SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr;
2015 SHAPE_POLY_SET maxExtents;
2016 SHAPE_POLY_SET smoothedPoly;
2017 PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
2018
2019 if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
2020 {
2021 debugLayer = aLayer;
2022 aLayer = F_Cu;
2023 }
2024
2025 if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) )
2026 return false;
2027
2029 return false;
2030
2031 if( aZone->IsOnCopperLayer() )
2032 {
2033 if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) )
2034 aZone->SetNeedRefill( false );
2035 }
2036 else
2037 {
2038 if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) )
2039 aZone->SetNeedRefill( false );
2040 }
2041
2042 return true;
2043}
2044
2045
2050 const std::vector<PAD*>& aSpokedPadsList,
2051 std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
2052{
2054 BOX2I zoneBB = aZone->GetBoundingBox();
2055 DRC_CONSTRAINT constraint;
2056 int zone_half_width = aZone->GetMinThickness() / 2;
2057
2058 zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance().value() ) );
2059
2060 // Is a point on the boundary of the polygon inside or outside?
2061 // The boundary may be off by MaxError
2062 int epsilon = bds.m_MaxError;
2063
2064 for( PAD* pad : aSpokedPadsList )
2065 {
2066 // We currently only connect to pads, not pad holes
2067 if( !pad->IsOnLayer( aLayer ) )
2068 continue;
2069
2070 constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer );
2071 int thermalReliefGap = constraint.GetValue().Min();
2072
2073 constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer );
2074 int spoke_w = constraint.GetValue().Opt();
2075
2076 // Spoke width should ideally be smaller than the pad minor axis.
2077 // Otherwise the thermal shape is not really a thermal relief,
2078 // and the algo to count the actual number of spokes can fail
2079 int spoke_max_allowed_w = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
2080
2081 spoke_w = std::clamp( spoke_w, constraint.Value().Min(), constraint.Value().Max() );
2082
2083 // ensure the spoke width is smaller than the pad minor size
2084 spoke_w = std::min( spoke_w, spoke_max_allowed_w );
2085
2086 // Cannot create stubs having a width < zone min thickness
2087 if( spoke_w < aZone->GetMinThickness() )
2088 continue;
2089
2090 int spoke_half_w = spoke_w / 2;
2091
2092 // Quick test here to possibly save us some work
2093 BOX2I itemBB = pad->GetBoundingBox();
2094 itemBB.Inflate( thermalReliefGap + epsilon );
2095
2096 if( !( itemBB.Intersects( zoneBB ) ) )
2097 continue;
2098
2099 bool customSpokes = false;
2100
2101 if( pad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
2102 {
2103 for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
2104 {
2105 if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
2106 {
2107 customSpokes = true;
2108 break;
2109 }
2110 }
2111 }
2112
2113 // Thermal spokes consist of square-ended segments from the pad center to points just
2114 // outside the thermal relief. The outside end has an extra center point (which must be
2115 // at idx 3) which is used for testing whether or not the spoke connects to copper in the
2116 // parent zone.
2117
2118 auto buildSpokesFromOrigin =
2119 [&]( const BOX2I& box, EDA_ANGLE angle )
2120 {
2121 VECTOR2I center = box.GetCenter();
2122 VECTOR2I half_size( box.GetWidth() / 2, box.GetHeight() / 2 );
2123
2124 // Function to find intersection of line with box edge
2125 auto intersectLineBox = [&](const VECTOR2D& direction) -> VECTOR2I {
2126 double dx = direction.x;
2127 double dy = direction.y;
2128
2129 // Short-circuit the axis cases because they will be degenerate in the
2130 // intersection test
2131 if( direction.x == 0 )
2132 return VECTOR2I( 0, dy * half_size.y );
2133 else if( direction.y == 0 )
2134 return VECTOR2I( dx * half_size.x, 0 );
2135
2136 // We are going to intersect with one side or the other. Whichever
2137 // we hit first is the fraction of the spoke length we keep
2138 double tx = std::min( half_size.x / std::abs( dx ),
2139 half_size.y / std::abs( dy ) );
2140 return VECTOR2I( dx * tx, dy * tx );
2141 };
2142
2143 // Precalculate angles for four cardinal directions
2144 const EDA_ANGLE angles[4] = {
2145 EDA_ANGLE( 0.0, DEGREES_T ) + angle, // Right
2146 EDA_ANGLE( 90.0, DEGREES_T ) + angle, // Up
2147 EDA_ANGLE( 180.0, DEGREES_T ) + angle, // Left
2148 EDA_ANGLE( 270.0, DEGREES_T ) + angle // Down
2149 };
2150
2151 // Generate four spokes in cardinal directions
2152 for( const EDA_ANGLE& spokeAngle : angles )
2153 {
2154 VECTOR2D direction( spokeAngle.Cos(), spokeAngle.Sin() );
2155 VECTOR2D perpendicular = direction.Perpendicular();
2156
2157 VECTOR2I intersection = intersectLineBox( direction );
2158 VECTOR2I spoke_side = perpendicular.Resize( spoke_half_w );
2159
2160 SHAPE_LINE_CHAIN spoke;
2161 spoke.Append( center + spoke_side );
2162 spoke.Append( center - spoke_side );
2163 spoke.Append( center + intersection - spoke_side );
2164 spoke.Append( center + intersection ); // test pt
2165 spoke.Append( center + intersection + spoke_side );
2166 spoke.SetClosed( true );
2167 aSpokesList.push_back( std::move( spoke ) );
2168 }
2169 };
2170
2171 if( customSpokes )
2172 {
2173 SHAPE_POLY_SET thermalPoly;
2174 SHAPE_LINE_CHAIN thermalOutline;
2175
2176 pad->TransformShapeToPolygon( thermalPoly, aLayer, thermalReliefGap + epsilon,
2178
2179 if( thermalPoly.OutlineCount() )
2180 thermalOutline = thermalPoly.Outline( 0 );
2181
2182 SHAPE_LINE_CHAIN padOutline = pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Outline( 0 );
2183
2184 auto trimToOutline = [&]( SEG& aSegment )
2185 {
2186 SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
2187
2188 if( padOutline.Intersect( aSegment, intersections ) )
2189 {
2190 intersections.clear();
2191
2192 // Trim the segment to the thermal outline
2193 if( thermalOutline.Intersect( aSegment, intersections ) )
2194 {
2195 aSegment.B = intersections.front().p;
2196 return true;
2197 }
2198 }
2199 return false;
2200 };
2201
2202 for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
2203 {
2204 if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
2205 {
2206 SEG seg( primitive->GetStart(), primitive->GetEnd() );
2207 SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
2208
2209 RotatePoint( seg.A, pad->GetOrientation() );
2210 RotatePoint( seg.B, pad->GetOrientation() );
2211 seg.A += pad->ShapePos( aLayer );
2212 seg.B += pad->ShapePos( aLayer );
2213
2214 // Make sure seg.A is the origin
2215 if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.A ) )
2216 {
2217 // Do not create this spoke if neither point is in the pad.
2218 if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.B ) )
2219 {
2220 continue;
2221 }
2222 seg.Reverse();
2223 }
2224
2225 // Trim segment to pad and thermal outline polygon.
2226 // If there is no intersection with the pad, don't create the spoke.
2227 if( trimToOutline( seg ) )
2228 {
2229 VECTOR2I direction = ( seg.B - seg.A ).Resize( spoke_half_w );
2230 VECTOR2I offset = direction.Perpendicular().Resize( spoke_half_w );
2231 // Extend the spoke edges by half the spoke width to capture convex pad shapes with a maximum of 45 degrees.
2232 SEG segL( seg.A - direction - offset, seg.B + direction - offset );
2233 SEG segR( seg.A - direction + offset, seg.B + direction + offset );
2234 // Only create this spoke if both edges intersect the pad and thermal outline
2235 if( trimToOutline( segL ) && trimToOutline( segR ) )
2236 {
2237 // Extend the spoke by the minimum thickness for the zone to ensure full connection width
2238 direction = direction.Resize( aZone->GetMinThickness() );
2239
2240 SHAPE_LINE_CHAIN spoke;
2241
2242 spoke.Append( seg.A + offset );
2243 spoke.Append( seg.A - offset );
2244
2245 spoke.Append( segL.B + direction );
2246 spoke.Append( seg.B + direction ); // test pt at index 3.
2247 spoke.Append( segR.B + direction );
2248
2249 spoke.SetClosed( true );
2250 aSpokesList.push_back( std::move( spoke ) );
2251 }
2252 }
2253 }
2254 }
2255 }
2256 else
2257 {
2258 // Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
2259 // from dirtying the real pad's cached shapes.
2260 PAD dummy_pad( *pad );
2261 dummy_pad.SetOrientation( ANGLE_0 );
2262
2263 // Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
2264 // offset and is at position 0,0
2265 dummy_pad.SetPosition( VECTOR2I( 0, 0 ) );
2266 dummy_pad.SetOffset( aLayer, VECTOR2I( 0, 0 ) );
2267
2268 BOX2I spokesBox = dummy_pad.GetBoundingBox();
2269
2270 // Add the half width of the zone mininum width to the inflate amount to account for
2271 // the fact that the deflation procedure will shrink the results by half the half the
2272 // zone min width
2273 spokesBox.Inflate( thermalReliefGap + epsilon + zone_half_width );
2274
2275 // This is a touchy case because the bounding box for circles overshoots the mark
2276 // when rotated at 45 degrees. So we just build spokes at 0 degrees and rotate
2277 // them later.
2278 if( pad->GetShape( aLayer ) == PAD_SHAPE::CIRCLE
2279 || ( pad->GetShape( aLayer ) == PAD_SHAPE::OVAL
2280 && pad->GetSizeX() == pad->GetSizeY() ) )
2281 {
2282 buildSpokesFromOrigin( spokesBox, ANGLE_0 );
2283
2284 if( pad->GetThermalSpokeAngle() != ANGLE_0 )
2285 {
2286 //Rotate the last four elements of aspokeslist
2287 for( auto it = aSpokesList.rbegin(); it != aSpokesList.rbegin() + 4; ++it )
2288 it->Rotate( pad->GetThermalSpokeAngle() );
2289 }
2290 }
2291 else
2292 {
2293 buildSpokesFromOrigin( spokesBox, pad->GetThermalSpokeAngle() );
2294 }
2295
2296 auto spokeIter = aSpokesList.rbegin();
2297
2298 for( int ii = 0; ii < 4; ++ii, ++spokeIter )
2299 {
2300 spokeIter->Rotate( pad->GetOrientation() );
2301 spokeIter->Move( pad->ShapePos( aLayer ) );
2302 }
2303
2304 // Remove group membership from dummy item before deleting
2305 dummy_pad.SetParentGroup( nullptr );
2306 }
2307 }
2308
2309 for( size_t ii = 0; ii < aSpokesList.size(); ++ii )
2310 aSpokesList[ii].GenerateBBoxCache();
2311}
2312
2313
2315 PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys )
2316{
2317 // Build grid:
2318
2319 // obviously line thickness must be > zone min thickness.
2320 // It can happens if a board file was edited by hand by a python script
2321 // Use 1 micron margin to be *sure* there is no issue in Gerber files
2322 // (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
2323 // This margin also avoid problems due to rounding coordinates in next calculations
2324 // that can create incorrect polygons
2325 int thickness = std::max( aZone->GetHatchThickness(),
2326 aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) );
2327
2328 int linethickness = thickness - aZone->GetMinThickness();
2329 int gridsize = thickness + aZone->GetHatchGap();
2330 int maxError = m_board->GetDesignSettings().m_MaxError;
2331
2332 SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation();
2333 // Use a area that contains the rotated bbox by orientation, and after rotate the result
2334 // by -orientation.
2335 if( !aZone->GetHatchOrientation().IsZero() )
2336 filledPolys.Rotate( - aZone->GetHatchOrientation() );
2337
2338 BOX2I bbox = filledPolys.BBox( 0 );
2339
2340 // Build hole shape
2341 // the hole size is aZone->GetHatchGap(), but because the outline thickness
2342 // is aZone->GetMinThickness(), the hole shape size must be larger
2343 SHAPE_LINE_CHAIN hole_base;
2344 int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness();
2345 VECTOR2I corner( 0, 0 );;
2346 hole_base.Append( corner );
2347 corner.x += hole_size;
2348 hole_base.Append( corner );
2349 corner.y += hole_size;
2350 hole_base.Append( corner );
2351 corner.x = 0;
2352 hole_base.Append( corner );
2353 hole_base.SetClosed( true );
2354
2355 // Calculate minimal area of a grid hole.
2356 // All holes smaller than a threshold will be removed
2357 double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
2358
2359 // Now convert this hole to a smoothed shape:
2360 if( aZone->GetHatchSmoothingLevel() > 0 )
2361 {
2362 // the actual size of chamfer, or rounded corner radius is the half size
2363 // of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
2364 // aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
2365 // radius of corner (radius = half size of the hole)
2366 int smooth_value = KiROUND( aZone->GetHatchGap()
2367 * aZone->GetHatchSmoothingValue() / 2 );
2368
2369 // Minimal optimization:
2370 // make smoothing only for reasonable smooth values, to avoid a lot of useless segments
2371 // and if the smooth value is small, use chamfer even if fillet is requested
2372 #define SMOOTH_MIN_VAL_MM 0.02
2373 #define SMOOTH_SMALL_VAL_MM 0.04
2374
2375 if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) )
2376 {
2377 SHAPE_POLY_SET smooth_hole;
2378 smooth_hole.AddOutline( hole_base );
2379 int smooth_level = aZone->GetHatchSmoothingLevel();
2380
2381 if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
2382 smooth_level = 1;
2383
2384 // Use a larger smooth_value to compensate the outline tickness
2385 // (chamfer is not visible is smooth value < outline thickess)
2386 smooth_value += aZone->GetMinThickness() / 2;
2387
2388 // smooth_value cannot be bigger than the half size oh the hole:
2389 smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
2390
2391 // the error to approximate a circle by segments when smoothing corners by a arc
2392 maxError = std::max( maxError * 2, smooth_value / 20 );
2393
2394 switch( smooth_level )
2395 {
2396 case 1:
2397 // Chamfer() uses the distance from a corner to create a end point
2398 // for the chamfer.
2399 hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
2400 break;
2401
2402 default:
2403 if( aZone->GetHatchSmoothingLevel() > 2 )
2404 maxError /= 2; // Force better smoothing
2405
2406 hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 );
2407 break;
2408
2409 case 0:
2410 break;
2411 };
2412 }
2413 }
2414
2415 // Build holes
2416 SHAPE_POLY_SET holes;
2417
2418 VECTOR2I offset_opt = VECTOR2I();
2419 bool zone_has_offset = false;
2420
2421 if( aZone->LayerProperties().contains( aLayer ) )
2422 {
2423 zone_has_offset = aZone->HatchingOffset( aLayer ).has_value();
2424
2425 offset_opt = aZone->HatchingOffset( aLayer ).value_or( VECTOR2I( 0, 0 ) );
2426 }
2427
2428 if( !zone_has_offset )
2429 {
2431 aLayer ) )
2432 {
2433 const ZONE_LAYER_PROPERTIES& properties =
2435 aLayer );
2436
2437 offset_opt = properties.hatching_offset.value_or( VECTOR2I( 0, 0 ) );
2438 }
2439 }
2440
2441
2442 int x_offset = bbox.GetX() - ( bbox.GetX() ) % gridsize - gridsize;
2443 int y_offset = bbox.GetY() - ( bbox.GetY() ) % gridsize - gridsize;
2444
2445
2446 for( int xx = x_offset; xx <= bbox.GetRight(); xx += gridsize )
2447 {
2448 for( int yy = y_offset; yy <= bbox.GetBottom(); yy += gridsize )
2449 {
2450 // Generate hole
2451 SHAPE_LINE_CHAIN hole( hole_base );
2452 hole.Move( VECTOR2I( xx, yy ) );
2453
2454 if( !aZone->GetHatchOrientation().IsZero() )
2455 {
2456 hole.Rotate( aZone->GetHatchOrientation() );
2457 }
2458
2459 hole.Move( VECTOR2I( offset_opt.x % gridsize, offset_opt.y % gridsize ) );
2460
2461 holes.AddOutline( hole );
2462 }
2463 }
2464
2465
2466 DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );
2467
2468 int outline_margin = aZone->GetMinThickness() * 1.1;
2469
2470 // Using GetHatchThickness() can look more consistent than GetMinThickness().
2471 if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin )
2472 outline_margin = aZone->GetHatchThickness();
2473
2474 // The fill has already been deflated to ensure GetMinThickness() so we just have to
2475 // account for anything beyond that.
2476 SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation();
2477 deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(),
2478 CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
2479 holes.BooleanIntersection( deflatedFilledPolys );
2480 DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );
2481
2482 SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation();
2483 deflatedOutline.Deflate( outline_margin, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
2484 holes.BooleanIntersection( deflatedOutline );
2485 DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );
2486
2487 if( aZone->GetNetCode() != 0 )
2488 {
2489 // Vias and pads connected to the zone must not be allowed to become isolated inside
2490 // one of the holes. Effectively this means their copper outline needs to be expanded
2491 // to be at least as wide as the gap so that it is guaranteed to touch at least one
2492 // edge.
2493 BOX2I zone_boundingbox = aZone->GetBoundingBox();
2494 SHAPE_POLY_SET aprons;
2495 int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
2496
2497 for( PCB_TRACK* track : m_board->Tracks() )
2498 {
2499 if( track->Type() == PCB_VIA_T )
2500 {
2501 PCB_VIA* via = static_cast<PCB_VIA*>( track );
2502
2503 if( via->GetNetCode() == aZone->GetNetCode()
2504 && via->IsOnLayer( aLayer )
2505 && via->GetBoundingBox().Intersects( zone_boundingbox ) )
2506 {
2507 int r = std::max( min_apron_radius,
2508 via->GetDrillValue() / 2 + outline_margin );
2509
2510 TransformCircleToPolygon( aprons, via->GetPosition(), r, maxError,
2511 ERROR_OUTSIDE );
2512 }
2513 }
2514 }
2515
2516 for( FOOTPRINT* footprint : m_board->Footprints() )
2517 {
2518 for( PAD* pad : footprint->Pads() )
2519 {
2520 if( pad->GetNetCode() == aZone->GetNetCode()
2521 && pad->IsOnLayer( aLayer )
2522 && pad->GetBoundingBox().Intersects( zone_boundingbox ) )
2523 {
2524 // What we want is to bulk up the pad shape so that the narrowest bit of
2525 // copper between the hole and the apron edge is at least outline_margin
2526 // wide (and that the apron itself meets min_apron_radius. But that would
2527 // take a lot of code and math, and the following approximation is close
2528 // enough.
2529 int pad_width = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
2530 int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
2531 int min_annular_ring_width = ( pad_width - slot_width ) / 2;
2532 int clearance = std::max( min_apron_radius - pad_width / 2,
2533 outline_margin - min_annular_ring_width );
2534
2535 clearance = std::max( 0, clearance - linethickness / 2 );
2536 pad->TransformShapeToPolygon( aprons, aLayer, clearance, maxError,
2537 ERROR_OUTSIDE );
2538 }
2539 }
2540 }
2541
2542 holes.BooleanSubtract( aprons );
2543 }
2544 DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) );
2545
2546 // Now filter truncated holes to avoid small holes in pattern
2547 // It happens for holes near the zone outline
2548 for( int ii = 0; ii < holes.OutlineCount(); )
2549 {
2550 double area = holes.Outline( ii ).Area();
2551
2552 if( area < minimal_hole_area ) // The current hole is too small: remove it
2553 holes.DeletePolygon( ii );
2554 else
2555 ++ii;
2556 }
2557
2558 // create grid. Useto
2559 // generate strictly simple polygons needed by Gerber files and Fracture()
2560 aFillPolys.BooleanSubtract( aFillPolys, holes );
2561 DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );
2562
2563 return true;
2564}
@ ERROR_OUTSIDE
Definition: approximation.h:33
@ ERROR_INSIDE
Definition: approximation.h:34
constexpr int ARC_HIGH_DEF
Definition: base_units.h:120
constexpr EDA_IU_SCALE pcbIUScale
Definition: base_units.h:108
@ ZLO_FORCE_NO_ZONE_CONNECTION
Definition: board_item.h:69
@ ZLO_FORCE_FLASHED
Definition: board_item.h:68
constexpr BOX2I KiROUND(const BOX2D &aBoxD)
Definition: box2.h:990
static const ADVANCED_CFG & GetCfg()
Get the singleton instance's config, which is shared by all consumers.
Container for design settings for a BOARD object.
std::shared_ptr< DRC_ENGINE > m_DRCEngine
ZONE_SETTINGS & GetDefaultZoneSettings()
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Definition: board_item.h:78
virtual void TransformShapeToPolygon(SHAPE_POLY_SET &aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth=false) const
Convert the item shape to a closed polygon.
Definition: board_item.cpp:256
virtual void SetIsKnockout(bool aKnockout)
Definition: board_item.h:317
virtual const BOARD * GetBoard() const
Return the BOARD in which this BOARD_ITEM resides, or NULL if none.
Definition: board_item.cpp:48
Information pertinent to a Pcbnew printed circuit board.
Definition: board.h:297
bool GetBoardPolygonOutlines(SHAPE_POLY_SET &aOutlines, OUTLINE_ERROR_HANDLER *aErrorHandler=nullptr, bool aAllowUseArcsInPolygons=false, bool aIncludeNPTHAsOutlines=false)
Extract the board outlines and build a closed polygon from lines, arcs and circle items on edge cut l...
Definition: board.cpp:2531
LSET GetEnabledLayers() const
A proxy function that calls the corresponding function in m_BoardSettings.
Definition: board.cpp:829
const ZONES & Zones() const
Definition: board.h:342
int GetMaxClearanceValue() const
Returns the maximum clearance value for any object on the board.
Definition: board.cpp:958
int GetCopperLayerCount() const
Definition: board.cpp:781
const FOOTPRINTS & Footprints() const
Definition: board.h:338
const TRACKS & Tracks() const
Definition: board.h:336
PROJECT * GetProject() const
Definition: board.h:511
BOARD_DESIGN_SETTINGS & GetDesignSettings() const
Definition: board.cpp:946
std::shared_ptr< CONNECTIVITY_DATA > GetConnectivity() const
Return a list of missing connections between components/tracks.
Definition: board.h:495
const DRAWINGS & Drawings() const
Definition: board.h:340
constexpr int GetSizeMax() const
Definition: box2.h:235
constexpr BOX2< Vec > & Inflate(coord_type dx, coord_type dy)
Inflates the rectangle horizontally by dx and vertically by dy.
Definition: box2.h:558
constexpr coord_type GetY() const
Definition: box2.h:208
constexpr size_type GetWidth() const
Definition: box2.h:214
constexpr coord_type GetX() const
Definition: box2.h:207
constexpr BOX2< Vec > & Merge(const BOX2< Vec > &aRect)
Modify the position and size of the rectangle in order to contain aRect.
Definition: box2.h:658
constexpr const Vec GetCenter() const
Definition: box2.h:230
constexpr size_type GetHeight() const
Definition: box2.h:215
constexpr coord_type GetRight() const
Definition: box2.h:217
constexpr bool Intersects(const BOX2< Vec > &aRect) const
Definition: box2.h:311
constexpr coord_type GetBottom() const
Definition: box2.h:222
Represent a set of changes (additions, deletions or modifications) of a data model (e....
Definition: commit.h:74
COMMIT & Modify(EDA_ITEM *aItem, BASE_SCREEN *aScreen=nullptr)
Modify a given item in the model.
Definition: commit.h:108
MINOPTMAX< int > & Value()
Definition: drc_rule.h:153
const MINOPTMAX< int > & GetValue() const
Definition: drc_rule.h:152
ZONE_CONNECTION m_ZoneConnection
Definition: drc_rule.h:192
bool IsNull() const
Definition: drc_rule.h:147
bool IsZero() const
Definition: eda_angle.h:133
KICAD_T Type() const
Returns the type of object.
Definition: eda_item.h:108
virtual void SetParentGroup(EDA_GROUP *aGroup)
Definition: eda_item.h:113
Helper class to create more flexible dialogs, including 'do not show again' checkbox handling.
Definition: kidialog.h:43
void DoNotShowCheckbox(wxString file, int line)
Shows the 'do not show again' checkbox.
Definition: kidialog.cpp:51
bool SetOKCancelLabels(const ButtonLabel &ok, const ButtonLabel &cancel) override
Definition: kidialog.h:53
int ShowModal() override
Definition: kidialog.cpp:95
LSET is a set of PCB_LAYER_IDs.
Definition: lset.h:37
static LSET InternalCuMask()
Return a complete set of internal copper layers which is all Cu layers except F_Cu and B_Cu.
Definition: lset.cpp:561
static LSET AllCuMask(int aCuLayerCount=MAX_CU_LAYERS)
Return a mask holding the requested number of Cu PCB_LAYER_IDs.
Definition: lset.cpp:572
LSEQ Seq(const LSEQ &aSequence) const
Return an LSEQ from the union of this LSET and a desired sequence.
Definition: lset.cpp:297
bool Contains(PCB_LAYER_ID aLayer) const
See if the layer set contains a PCB layer.
Definition: lset.h:63
T Min() const
Definition: minoptmax.h:33
T Max() const
Definition: minoptmax.h:34
T Opt() const
Definition: minoptmax.h:35
Definition: pad.h:54
const BOX2I GetBoundingBox() const override
The bounding box is cached, so this will be efficient most of the time.
Definition: pad.cpp:849
PAD_SHAPE GetShape(PCB_LAYER_ID aLayer) const
Definition: pad.h:195
void TransformShapeToPolygon(SHAPE_POLY_SET &aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc=ERROR_INSIDE, bool ignoreLineWidth=false) const override
Convert the pad shape to a closed polygon.
Definition: pad.cpp:1957
void SetOffset(PCB_LAYER_ID aLayer, const VECTOR2I &aOffset)
Definition: pad.h:311
void SetPosition(const VECTOR2I &aPos) override
Definition: pad.h:202
PADSTACK::CUSTOM_SHAPE_ZONE_MODE GetCustomShapeInZoneOpt() const
Definition: pad.h:221
void SetOrientation(const EDA_ANGLE &aAngle)
Set the rotation angle of the pad.
Definition: pad.cpp:933
bool TransformHoleToPolygon(SHAPE_POLY_SET &aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc=ERROR_INSIDE) const
Build the corner list of the polygonal drill shape in the board coordinate system.
Definition: pad.cpp:1940
Abstract dimension API.
void TransformShapeToPolygon(SHAPE_POLY_SET &aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool aIgnoreLineWidth=false) const override
Convert the item shape to a closed polygon.
void TransformTextToPolySet(SHAPE_POLY_SET &aBuffer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc) const
Function TransformTextToPolySet Convert the text to a polygonSet describing the actual character stro...
Definition: pcb_text.cpp:514
A progress reporter interface for use in multi-threaded environments.
virtual bool IsCancelled() const =0
virtual bool KeepRefreshing(bool aWait=false)=0
Update the UI (if any).
virtual void Report(const wxString &aMessage)=0
Display aMessage in the progress bar dialog.
virtual void AdvancePhase()=0
Use the next available virtual zone of the dialog progress bar.
virtual void AdvanceProgress()=0
Increment the progress bar length (inside the current virtual zone).
virtual void SetMaxProgress(int aMaxProgress)=0
Fix the value that gives the 100 percent progress bar length (inside the current virtual zone).
bool m_PrototypeZoneFill
Whether Zone fill should always be solid for performance with large boards.
virtual PROJECT_LOCAL_SETTINGS & GetLocalSettings() const
Definition: project.h:209
int m_vertex2
Definition: zone_filler.cpp:80
RESULTS(int aOutline1, int aOutline2, int aVertex1, int aVertex2)
Definition: zone_filler.cpp:60
int m_outline2
Definition: zone_filler.cpp:78
int m_outline1
Definition: zone_filler.cpp:77
int m_vertex1
Definition: zone_filler.cpp:79
bool operator<(const RESULTS &aOther) const
Definition: zone_filler.cpp:66
Definition: seg.h:42
VECTOR2I A
Definition: seg.h:49
VECTOR2I::extended_type ecoord
Definition: seg.h:44
VECTOR2I B
Definition: seg.h:50
static SEG::ecoord Square(int a)
Definition: seg.h:123
void Reverse()
Definition: seg.h:358
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
void Move(const VECTOR2I &aVector) override
void SetClosed(bool aClosed)
Mark the line chain as closed (i.e.
int Intersect(const SEG &aSeg, INTERSECTIONS &aIp) const
Find all intersection points between our line chain and the segment aSeg.
double Area(bool aAbsolute=true) const
Return the area of this chain.
void Append(int aX, int aY, bool aAllowDuplication=false)
Append a new point at the end of the line chain.
void Rotate(const EDA_ANGLE &aAngle, const VECTOR2I &aCenter={ 0, 0 }) override
Rotate all vertices by a given angle.
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
void Insert(size_t aVertex, const VECTOR2I &aP)
std::vector< INTERSECTION > INTERSECTIONS
Represent a set of closed polygons.
void Rotate(const EDA_ANGLE &aAngle, const VECTOR2I &aCenter={ 0, 0 }) override
Rotate all vertices by a given angle.
void RemoveAllContours()
Remove all outlines & holes (clears) the polygon set.
SHAPE_POLY_SET Chamfer(int aDistance)
Return a chamfered version of the polygon set.
void ClearArcs()
Removes all arc references from all the outlines and holes in the polyset.
int AddOutline(const SHAPE_LINE_CHAIN &aOutline)
Adds a new outline to the set and returns its index.
void DeletePolygon(int aIdx)
Delete aIdx-th polygon from the set.
double Area()
Return the area of this poly set.
void Fracture()
Convert a set of polygons with holes to a single outline with "slits"/"fractures" connecting the oute...
bool Collide(const SHAPE *aShape, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const override
Check if the boundary of shape (this) lies closer to the shape aShape than aClearance,...
POLYGON & Polygon(int aIndex)
Return the aIndex-th subpolygon in the set.
void Inflate(int aAmount, CORNER_STRATEGY aCornerStrategy, int aMaxError, bool aSimplify=false)
Perform outline inflation/deflation.
int Append(int x, int y, int aOutline=-1, int aHole=-1, bool aAllowDuplication=false)
Appends a vertex at the end of the given outline/hole (default: the last outline)
void Simplify()
Simplify the polyset (merges overlapping polys, eliminates degeneracy/self-intersections)
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
int NewOutline()
Creates a new empty polygon in the set and returns its index.
void Deflate(int aAmount, CORNER_STRATEGY aCornerStrategy, int aMaxError)
void BooleanIntersection(const SHAPE_POLY_SET &b)
Perform boolean polyset intersection.
void BuildBBoxCaches() const
Construct BBoxCaches for Contains(), below.
int OutlineCount() const
Return the number of outlines in the set.
SHAPE_POLY_SET Fillet(int aRadius, int aErrorMax)
Return a filleted version of the polygon set.
bool Contains(const VECTOR2I &aP, int aSubpolyIndex=-1, int aAccuracy=0, bool aUseBBoxCaches=false) const
Return true if a given subpolygon contains the point aP.
SHAPE_POLY_SET CloneDropTriangulation() const
void BooleanSubtract(const SHAPE_POLY_SET &b)
Perform boolean polyset difference.
const BOX2I BBoxFromCaches() const
const BOX2I BBox(int aClearance=0) const override
Compute a bounding box of the shape, with a margin of aClearance a collision.
constexpr extended_type SquaredEuclideanNorm() const
Compute the squared euclidean norm of the vector, which is defined as (x ** 2 + y ** 2).
Definition: vector2d.h:307
constexpr VECTOR2< T > Perpendicular() const
Compute the perpendicular vector.
Definition: vector2d.h:314
VECTOR2< T > Resize(T aNewLength) const
Return a vector of the same direction, but length specified in aNewLength.
Definition: vector2d.h:385
VERTEX * getPoint(VERTEX *aPt) const
Definition: zone_filler.cpp:99
std::set< RESULTS > GetResults() const
VERTEX_CONNECTOR(const BOX2I &aBBox, const SHAPE_POLY_SET &aPolys, int aDist)
Definition: zone_filler.cpp:86
std::set< RESULTS > m_results
std::deque< VERTEX > m_vertices
Definition: vertex_set.h:343
VERTEX * createList(const SHAPE_LINE_CHAIN &points, VERTEX *aTail=nullptr, void *aUserData=nullptr)
Create a list of vertices from a line chain.
Definition: vertex_set.cpp:27
void SetBoundingBox(const BOX2I &aBBox)
Definition: vertex_set.cpp:21
uint32_t zOrder(const double aX, const double aY) const
Note that while the inputs are doubles, these are scaled by the size of the bounding box to fit into ...
Definition: vertex_set.cpp:81
const double x
Definition: vertex_set.h:235
VERTEX * next
Definition: vertex_set.h:241
VERTEX * prevZ
Definition: vertex_set.h:247
void updateList()
After inserting or changing nodes, this function should be called to remove duplicate vertices and en...
Definition: vertex_set.h:121
VERTEX * nextZ
Definition: vertex_set.h:248
VERTEX * prev
Definition: vertex_set.h:240
const int i
Definition: vertex_set.h:234
void * GetUserData() const
Definition: vertex_set.h:79
uint32_t z
Definition: vertex_set.h:244
bool isEar(bool aMatchUserData=false) const
Check whether the given vertex is in the middle of an ear.
Definition: vertex_set.cpp:264
const double y
Definition: vertex_set.h:236
COMMIT * m_commit
Definition: zone_filler.h:141
int m_worstClearance
Definition: zone_filler.h:145
void buildCopperItemClearances(const ZONE *aZone, PCB_LAYER_ID aLayer, const std::vector< PAD * > &aNoConnectionPads, SHAPE_POLY_SET &aHoles)
Removes clearance from the shape for copper items which share the zone's layer but are not connected ...
void addKnockout(PAD *aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET &aHoles)
Add a knockout for a pad.
bool m_debugZoneFiller
Definition: zone_filler.h:147
void connect_nearby_polys(SHAPE_POLY_SET &aPolys, double aDistance)
Create strands of zero-width between elements of SHAPE_POLY_SET that are within aDistance of each oth...
ZONE_FILLER(BOARD *aBoard, COMMIT *aCommit)
void buildThermalSpokes(const ZONE *box, PCB_LAYER_ID aLayer, const std::vector< PAD * > &aSpokedPadsList, std::deque< SHAPE_LINE_CHAIN > &aSpokes)
Function buildThermalSpokes Constructs a list of all thermal spokes for the given zone.
void subtractHigherPriorityZones(const ZONE *aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET &aRawFill)
Removes the outlines of higher-proirity zones with the same net.
SHAPE_POLY_SET m_boardOutline
Definition: zone_filler.h:139
bool m_brdOutlinesValid
Definition: zone_filler.h:140
bool addHatchFillTypeOnZone(const ZONE *aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET &aFillPolys)
for zones having the ZONE_FILL_MODE::ZONE_FILL_MODE::HATCH_PATTERN, create a grid pattern in filled a...
void SetProgressReporter(PROGRESS_REPORTER *aReporter)
BOARD * m_board
Definition: zone_filler.h:138
void knockoutThermalReliefs(const ZONE *aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET &aFill, std::vector< PAD * > &aThermalConnectionPads, std::vector< PAD * > &aNoConnectionPads)
Removes thermal reliefs from the shape for any pads connected to the zone.
PROGRESS_REPORTER * m_progressReporter
Definition: zone_filler.h:142
bool fillCopperZone(const ZONE *aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, const SHAPE_POLY_SET &aSmoothedOutline, const SHAPE_POLY_SET &aMaxExtents, SHAPE_POLY_SET &aFillPolys)
Function fillCopperZone Add non copper areas polygons (pads and tracks with clearance) to a filled co...
void addHoleKnockout(PAD *aPad, int aGap, SHAPE_POLY_SET &aHoles)
Add a knockout for a pad's hole.
bool fillNonCopperZone(const ZONE *candidate, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET &aSmoothedOutline, SHAPE_POLY_SET &aFillPolys)
bool fillSingleZone(ZONE *aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET &aFillPolys)
Build the filled solid areas polygons from zone outlines (stored in m_Poly) The solid areas can be mo...
bool Fill(const std::vector< ZONE * > &aZones, bool aCheck=false, wxWindow *aParent=nullptr)
Fills the given list of zones.
std::map< PCB_LAYER_ID, ZONE_LAYER_PROPERTIES > m_layerProperties
Handle a list of polygons defining a copper zone.
Definition: zone.h:74
void SetNeedRefill(bool aNeedRefill)
Definition: zone.h:296
int GetHatchBorderAlgorithm() const
Definition: zone.h:334
std::optional< int > GetLocalClearance() const override
Definition: zone.cpp:795
ZONE_LAYER_PROPERTIES & LayerProperties(PCB_LAYER_ID aLayer)
Definition: zone.h:145
const std::optional< VECTOR2I > & HatchingOffset(PCB_LAYER_ID aLayer) const
Definition: zone.cpp:586
void CacheTriangulation(PCB_LAYER_ID aLayer=UNDEFINED_LAYER)
Create a list of triangles that "fill" the solid areas used for instance to draw these solid areas on...
Definition: zone.cpp:1288
const BOX2I GetBoundingBox() const override
Definition: zone.cpp:648
SHAPE_POLY_SET * Outline()
Definition: zone.h:368
void SetFillFlag(PCB_LAYER_ID aLayer, bool aFlag)
Definition: zone.h:290
void SetFilledPolysList(PCB_LAYER_ID aLayer, const SHAPE_POLY_SET &aPolysList)
Set the list of filled polygons.
Definition: zone.h:669
int GetMinThickness() const
Definition: zone.h:301
bool HigherPriority(const ZONE *aOther) const
Definition: zone.cpp:436
int GetHatchThickness() const
Definition: zone.h:316
double GetHatchHoleMinArea() const
Definition: zone.h:331
bool IsTeardropArea() const
Definition: zone.h:727
EDA_ANGLE GetHatchOrientation() const
Definition: zone.h:322
bool BuildSmoothedPoly(SHAPE_POLY_SET &aSmoothedPoly, PCB_LAYER_ID aLayer, SHAPE_POLY_SET *aBoardOutline, SHAPE_POLY_SET *aSmoothedPolyWithApron=nullptr) const
Definition: zone.cpp:1352
ZONE_FILL_MODE GetFillMode() const
Definition: zone.h:224
int GetHatchGap() const
Definition: zone.h:319
double GetHatchSmoothingValue() const
Definition: zone.h:328
int GetHatchSmoothingLevel() const
Definition: zone.h:325
bool IsOnCopperLayer() const override
Definition: zone.cpp:521
std::mutex & GetLock()
Definition: zone.h:280
unsigned GetAssignedPriority() const
Definition: zone.h:126
void TransformCircleToPolygon(SHAPE_LINE_CHAIN &aBuffer, const VECTOR2I &aCenter, int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount=0)
Convert a circle to a polygon, using multiple straight lines.
void BuildConvexHull(std::vector< VECTOR2I > &aResult, const std::vector< VECTOR2I > &aPoly)
Calculate the convex hull of a list of points in counter-clockwise order.
Definition: convex_hull.cpp:87
CORNER_STRATEGY
define how inflate transform build inflated polygon
DRC_CONSTRAINT_T
Definition: drc_rule.h:47
@ EDGE_CLEARANCE_CONSTRAINT
Definition: drc_rule.h:53
@ PHYSICAL_HOLE_CLEARANCE_CONSTRAINT
Definition: drc_rule.h:75
@ CLEARANCE_CONSTRAINT
Definition: drc_rule.h:49
@ THERMAL_SPOKE_WIDTH_CONSTRAINT
Definition: drc_rule.h:64
@ THERMAL_RELIEF_GAP_CONSTRAINT
Definition: drc_rule.h:63
@ HOLE_CLEARANCE_CONSTRAINT
Definition: drc_rule.h:51
@ PHYSICAL_CLEARANCE_CONSTRAINT
Definition: drc_rule.h:74
#define _(s)
static constexpr EDA_ANGLE ANGLE_0
Definition: eda_angle.h:401
@ DEGREES_T
Definition: eda_angle.h:31
a few functions useful in geometry calculations.
double m_ExtraClearance
When filling zones, we add an extra amount of clearance to each zone to ensure that rounding errors d...
bool m_DebugZoneFiller
A mode that dumps the various stages of a F_Cu fill into In1_Cu through In9_Cu.
This file is part of the common library.
PCB_LAYER_ID
A quick note on layer IDs:
Definition: layer_ids.h:60
@ In11_Cu
Definition: layer_ids.h:76
@ In17_Cu
Definition: layer_ids.h:82
@ Edge_Cuts
Definition: layer_ids.h:112
@ In9_Cu
Definition: layer_ids.h:74
@ In7_Cu
Definition: layer_ids.h:72
@ In15_Cu
Definition: layer_ids.h:80
@ In2_Cu
Definition: layer_ids.h:67
@ In10_Cu
Definition: layer_ids.h:75
@ Margin
Definition: layer_ids.h:113
@ In4_Cu
Definition: layer_ids.h:69
@ UNDEFINED_LAYER
Definition: layer_ids.h:61
@ In16_Cu
Definition: layer_ids.h:81
@ In1_Cu
Definition: layer_ids.h:66
@ In13_Cu
Definition: layer_ids.h:78
@ In8_Cu
Definition: layer_ids.h:73
@ In14_Cu
Definition: layer_ids.h:79
@ In12_Cu
Definition: layer_ids.h:77
@ In6_Cu
Definition: layer_ids.h:71
@ In5_Cu
Definition: layer_ids.h:70
@ In3_Cu
Definition: layer_ids.h:68
@ F_Cu
Definition: layer_ids.h:64
@ In18_Cu
Definition: layer_ids.h:83
EDA_ANGLE abs(const EDA_ANGLE &aAngle)
Definition: eda_angle.h:390
const double epsilon
constexpr int mmToIU(double mm) const
Definition: base_units.h:88
A storage class for 128-bit hash value.
Definition: hash_128.h:36
A struct recording the isolated and single-pad islands within a zone.
Definition: zone.h:61
std::optional< VECTOR2I > hatching_offset
Definition: zone_settings.h:51
VECTOR2I center
int radius
int clearance
thread_pool & GetKiCadThreadPool()
Get a reference to the current thread pool.
Definition: thread_pool.cpp:30
static thread_pool * tp
Definition: thread_pool.cpp:28
BS::thread_pool thread_pool
Definition: thread_pool.h:31
void RotatePoint(int *pX, int *pY, const EDA_ANGLE &aAngle)
Calculate the new point of coord coord pX, pY, for a rotation center 0, 0.
Definition: trigo.cpp:229
@ PCB_SHAPE_T
class PCB_SHAPE, a segment not on copper layers
Definition: typeinfo.h:88
@ PCB_DIM_ORTHOGONAL_T
class PCB_DIM_ORTHOGONAL, a linear dimension constrained to x/y
Definition: typeinfo.h:105
@ PCB_DIM_LEADER_T
class PCB_DIM_LEADER, a leader dimension (graphic item)
Definition: typeinfo.h:102
@ PCB_VIA_T
class PCB_VIA, a via (like a track segment on a copper layer)
Definition: typeinfo.h:97
@ PCB_DIM_CENTER_T
class PCB_DIM_CENTER, a center point marking (graphic item)
Definition: typeinfo.h:103
@ PCB_TEXTBOX_T
class PCB_TEXTBOX, wrapped text on a layer
Definition: typeinfo.h:93
@ PCB_TEXT_T
class PCB_TEXT, text on a layer
Definition: typeinfo.h:92
@ PCB_FIELD_T
class PCB_FIELD, text associated with a footprint property
Definition: typeinfo.h:90
@ PCB_TARGET_T
class PCB_TARGET, a target (graphic item)
Definition: typeinfo.h:106
@ PCB_DIM_ALIGNED_T
class PCB_DIM_ALIGNED, a linear dimension (graphic item)
Definition: typeinfo.h:101
@ PCB_TABLE_T
class PCB_TABLE, table of PCB_TABLECELLs
Definition: typeinfo.h:94
@ PCB_DIM_RADIAL_T
class PCB_DIM_RADIAL, a radius or diameter dimension
Definition: typeinfo.h:104
VECTOR2< int32_t > VECTOR2I
Definition: vector2d.h:695
#define SMOOTH_MIN_VAL_MM
#define DUMP_POLYS_TO_COPPER_LAYER(a, b, c)
#define SMOOTH_SMALL_VAL_MM
ISLAND_REMOVAL_MODE
Whether or not to remove isolated islands from a zone.
Definition: zone_settings.h:68
ZONE_CONNECTION
How pads are covered by copper in zone.
Definition: zones.h:47