KiCad PCB EDA Suite
trigo.h
Go to the documentation of this file.
1 /*
2  * This program source code file is part of KiCad, a free EDA CAD application.
3  *
4  * Copyright (C) 2018-2021 KiCad Developers, see AUTHORS.txt for contributors.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you may find one here:
18  * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
19  * or you may search the http://www.gnu.org website for the version 2 license,
20  * or you may write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
22  */
23 
24 #ifndef TRIGO_H
25 #define TRIGO_H
26 
31 #include <cmath>
32 #include <math/vector2d.h>
33 #include <wx/gdicmn.h> // For wxPoint
34 
47 bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd,
48  const wxPoint& aTestPoint );
49 
61 bool SegmentIntersectsSegment( const wxPoint& a_p1_l1, const wxPoint& a_p2_l1,
62  const wxPoint& a_p1_l2, const wxPoint& a_p2_l2,
63  wxPoint* aIntersectionPoint = nullptr );
64 
65 /*
66  * Calculate the new point of coord coord pX, pY,
67  * for a rotation center 0, 0, and angle in (1 / 10 degree)
68  */
69 void RotatePoint( int *pX, int *pY, double angle );
70 
71 /*
72  * Calculate the new point of coord coord pX, pY,
73  * for a rotation center cx, cy, and angle in (1 / 10 degree)
74  */
75 void RotatePoint( int *pX, int *pY, int cx, int cy, double angle );
76 
77 /*
78  * Calculate the new coord point point for a rotation angle in (1 / 10 degree).
79  */
80 inline void RotatePoint( wxPoint* point, double angle )
81 {
82  RotatePoint( &point->x, &point->y, angle );
83 }
84 
85 inline void RotatePoint( VECTOR2I& point, double angle )
86 {
87  RotatePoint( &point.x, &point.y, angle );
88 }
89 
90 void RotatePoint( VECTOR2I& point, const VECTOR2I& centre, double angle );
91 
92 /*
93  * Calculate the new coord point point for a center rotation center and angle in (1 / 10 degree).
94  */
95 void RotatePoint( wxPoint *point, const wxPoint & centre, double angle );
96 
97 void RotatePoint( double *pX, double *pY, double angle );
98 
99 void RotatePoint( double *pX, double *pY, double cx, double cy, double angle );
100 
109 const VECTOR2I GetArcCenter( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd );
110 const VECTOR2D GetArcCenter( const VECTOR2D& aStart, const VECTOR2D& aMid, const VECTOR2D& aEnd );
111 const wxPoint GetArcCenter( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd );
112 const wxPoint GetArcCenter( const VECTOR2I& aStart, const VECTOR2I& aEnd, double aAngle );
113 
117 double GetArcAngle( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd );
118 
130 const VECTOR2I GetArcMid( const VECTOR2I& aStart, const VECTOR2I& aEnd, const VECTOR2I& aCenter,
131  bool aMinArcAngle = true );
132 
133 /* Return the arc tangent of 0.1 degrees coord vector dx, dy
134  * between -1800 and 1800
135  * Equivalent to atan2 (but faster for calculations if
136  * the angle is 0 to -1800, or + - 900)
137  * Lorenzo: In fact usually atan2 already has to do these optimizations
138  * (due to the discontinuity in tan) but this function also returns
139  * in decidegrees instead of radians, so it's handier
140  */
141 double ArcTangente( int dy, int dx );
142 
146 inline double EuclideanNorm( const wxPoint &vector )
147 {
148  // this is working with doubles
149  return hypot( vector.x, vector.y );
150 }
151 
152 inline double EuclideanNorm( const wxSize &vector )
153 {
154  // this is working with doubles, too
155  return hypot( vector.x, vector.y );
156 }
157 
163 inline double DistanceLinePoint( const wxPoint& linePointA,
164  const wxPoint& linePointB,
165  const wxPoint& referencePoint )
166 {
167  // Some of the multiple double casts are redundant. However in the previous
168  // definition the cast was (implicitly) done too late, just before
169  // the division (EuclideanNorm gives a double so from int it would
170  // be promoted); that means that the whole expression were
171  // vulnerable to overflow during int multiplications
172  return fabs( ( static_cast<double>( linePointB.x - linePointA.x ) *
173  static_cast<double>( linePointA.y - referencePoint.y ) -
174  static_cast<double>( linePointA.x - referencePoint.x ) *
175  static_cast<double>( linePointB.y - linePointA.y) )
176  / EuclideanNorm( linePointB - linePointA ) );
177 }
178 
184 inline bool HitTestPoints( const wxPoint& pointA, const wxPoint& pointB, double threshold )
185 {
186  wxPoint vectorAB = pointB - pointA;
187 
188  // Compare the distances squared. The double is needed to avoid
189  // overflow during int multiplication
190  double sqdistance = (double)vectorAB.x * vectorAB.x + (double)vectorAB.y * vectorAB.y;
191 
192  return sqdistance < threshold * threshold;
193 }
194 
198 inline double CrossProduct( const wxPoint& vectorA, const wxPoint& vectorB )
199 {
200  // As before the cast is to avoid int overflow
201  return (double)vectorA.x * vectorB.y - (double)vectorA.y * vectorB.x;
202 }
203 
212 bool TestSegmentHit( const wxPoint& aRefPoint, const wxPoint& aStart, const wxPoint& aEnd,
213  int aDist );
214 
222 inline double GetLineLength( const wxPoint& aPointA, const wxPoint& aPointB )
223 {
224  // Implicitly casted to double
225  return hypot( aPointA.x - aPointB.x, aPointA.y - aPointB.y );
226 }
227 
228 // These are the usual degrees <-> radians conversion routines
229 inline double DEG2RAD( double deg ) { return deg * M_PI / 180.0; }
230 inline double RAD2DEG( double rad ) { return rad * 180.0 / M_PI; }
231 
232 // These are the same *but* work with the internal 'decidegrees' unit
233 inline double DECIDEG2RAD( double deg ) { return deg * M_PI / 1800.0; }
234 inline double RAD2DECIDEG( double rad ) { return rad * 1800.0 / M_PI; }
235 
236 /* These are templated over T (and not simply double) because Eeschema
237  is still using int for angles in some place */
238 
241 template <class T> inline T NormalizeAngle360Max( T Angle )
242 {
243  while( Angle < -3600 )
244  Angle += 3600;
245 
246  while( Angle > 3600 )
247  Angle -= 3600;
248 
249  return Angle;
250 }
251 
254 template <class T> inline T NormalizeAngle360Min( T Angle )
255 {
256  while( Angle <= -3600 )
257  Angle += 3600;
258 
259  while( Angle >= 3600 )
260  Angle -= 3600;
261 
262  return Angle;
263 }
264 
265 
267 template <class T>
268 inline T NormalizeAngleNeg( T Angle )
269 {
270  while( Angle <= -3600 )
271  Angle += 3600;
272 
273  while( Angle > 0 )
274  Angle -= 3600;
275 
276  return Angle;
277 }
278 
279 
281 template <class T> inline T NormalizeAnglePos( T Angle )
282 {
283  while( Angle < 0 )
284  Angle += 3600;
285  while( Angle >= 3600 )
286  Angle -= 3600;
287  return Angle;
288 }
289 
290 template <class T> inline void NORMALIZE_ANGLE_POS( T& Angle )
291 {
292  Angle = NormalizeAnglePos( Angle );
293 }
294 
295 
297 inline double NormalizeAngleDegreesPos( double Angle )
298 {
299  while( Angle < 0 )
300  Angle += 360.0;
301 
302  while( Angle >= 360.0 )
303  Angle -= 360.0;
304 
305  return Angle;
306 }
307 
308 
309 inline void NORMALIZE_ANGLE_DEGREES_POS( double& Angle )
310 {
311  Angle = NormalizeAngleDegreesPos( Angle );
312 }
313 
314 
315 inline double NormalizeAngleRadiansPos( double Angle )
316 {
317  while( Angle < 0 )
318  Angle += (2 * M_PI );
319 
320  while( Angle >= ( 2 * M_PI ) )
321  Angle -= ( 2 * M_PI );
322 
323  return Angle;
324 }
325 
327 inline double NormalizeAngleDegrees( double Angle, double aMin, double aMax )
328 {
329  while( Angle < aMin )
330  Angle += 360.0;
331 
332  while( Angle >= aMax )
333  Angle -= 360.0;
334 
335  return Angle;
336 }
337 
339 // because most of the time it's an int (and templates don't promote in
340 // that way)
341 template <class T, class T2> inline T AddAngles( T a1, T2 a2 )
342 {
343  a1 += a2;
344  NORMALIZE_ANGLE_POS( a1 );
345  return a1;
346 }
347 
348 
349 template <class T> inline T NegateAndNormalizeAnglePos( T Angle )
350 {
351  Angle = -Angle;
352 
353  while( Angle < 0 )
354  Angle += 3600;
355 
356  while( Angle >= 3600 )
357  Angle -= 3600;
358 
359  return Angle;
360 }
361 
362 template <class T> inline void NEGATE_AND_NORMALIZE_ANGLE_POS( T& Angle )
363 {
364  Angle = NegateAndNormalizeAnglePos( Angle );
365 }
366 
367 
369 template <class T> inline T NormalizeAngle90( T Angle )
370 {
371  while( Angle < -900 )
372  Angle += 1800;
373 
374  while( Angle > 900 )
375  Angle -= 1800;
376 
377  return Angle;
378 }
379 
380 template <class T> inline void NORMALIZE_ANGLE_90( T& Angle )
381 {
382  Angle = NormalizeAngle90( Angle );
383 }
384 
385 
387 template <class T> inline T NormalizeAngle180( T Angle )
388 {
389  while( Angle <= -1800 )
390  Angle += 3600;
391 
392  while( Angle > 1800 )
393  Angle -= 3600;
394 
395  return Angle;
396 }
397 
398 template <class T> inline void NORMALIZE_ANGLE_180( T& Angle )
399 {
400  Angle = NormalizeAngle180( Angle );
401 }
402 
411 inline bool InterceptsPositiveX( double aStartAngle, double aEndAngle )
412 {
413  double end = aEndAngle;
414 
415  if( aStartAngle > aEndAngle )
416  end += 360.0;
417 
418  return aStartAngle < 360.0 && end > 360.0;
419 }
420 
429 inline bool InterceptsNegativeX( double aStartAngle, double aEndAngle )
430 {
431  double end = aEndAngle;
432 
433  if( aStartAngle > aEndAngle )
434  end += 360.0;
435 
436  return aStartAngle < 180.0 && end > 180.0;
437 }
438 
443 inline double sindecideg( double r, double a )
444 {
445  return r * sin( DECIDEG2RAD( a ) );
446 }
447 
452 inline double cosdecideg( double r, double a )
453 {
454  return r * cos( DECIDEG2RAD( a ) );
455 }
456 
457 #endif
double EuclideanNorm(const wxPoint &vector)
Euclidean norm of a 2D vector.
Definition: trigo.h:146
T NormalizeAngleNeg(T Angle)
Normalize angle to be in the 0.0 .. -360.0 range: angle is in 1/10 degrees.
Definition: trigo.h:268
double GetLineLength(const wxPoint &aPointA, const wxPoint &aPointB)
Return the length of a line segment defined by aPointA and aPointB.
Definition: trigo.h:222
double GetArcAngle(const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd)
Return the subtended angle for a given arc.
Definition: trigo.cpp:496
T NormalizeAngle360Max(T Angle)
Normalize angle to be >=-360.0 and <= 360.0 Angle can be equal to -360 or +360.
Definition: trigo.h:241
double RAD2DEG(double rad)
Definition: trigo.h:230
Define a general 2D-vector/point.
Definition: vector2d.h:61
bool IsPointOnSegment(const wxPoint &aSegStart, const wxPoint &aSegEnd, const wxPoint &aTestPoint)
Test if aTestPoint is on line defined by aSegStart and aSegEnd.
Definition: trigo.cpp:42
double RAD2DECIDEG(double rad)
Definition: trigo.h:234
T NormalizeAngle90(T Angle)
Normalize angle to be in the -90.0 .. 90.0 range.
Definition: trigo.h:369
void NORMALIZE_ANGLE_DEGREES_POS(double &Angle)
Definition: trigo.h:309
void NORMALIZE_ANGLE_180(T &Angle)
Definition: trigo.h:398
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:229
void NORMALIZE_ANGLE_POS(T &Angle)
Definition: trigo.h:290
double NormalizeAngleRadiansPos(double Angle)
Definition: trigo.h:315
void NORMALIZE_ANGLE_90(T &Angle)
Definition: trigo.h:380
bool SegmentIntersectsSegment(const wxPoint &a_p1_l1, const wxPoint &a_p2_l1, const wxPoint &a_p1_l2, const wxPoint &a_p2_l2, wxPoint *aIntersectionPoint=nullptr)
Test if two lines intersect.
Definition: trigo.cpp:61
T NormalizeAngle180(T Angle)
Normalize angle to be in the -180.0 .. 180.0 range.
Definition: trigo.h:387
double NormalizeAngleDegreesPos(double Angle)
Normalize angle to be in the 0.0 .. 360.0 range: angle is in degrees.
Definition: trigo.h:297
const VECTOR2I GetArcMid(const VECTOR2I &aStart, const VECTOR2I &aEnd, const VECTOR2I &aCenter, bool aMinArcAngle=true)
Return the middle point of an arc, half-way between aStart and aEnd.
Definition: trigo.cpp:163
T AddAngles(T a1, T2 a2)
Add two angles (keeping the result normalized). T2 is here.
Definition: trigo.h:341
bool InterceptsPositiveX(double aStartAngle, double aEndAngle)
Test if an arc from aStartAngle to aEndAngle crosses the positive X axis (0 degrees).
Definition: trigo.h:411
bool TestSegmentHit(const wxPoint &aRefPoint, const wxPoint &aStart, const wxPoint &aEnd, int aDist)
Test if aRefPoint is with aDistance on the line defined by aStart and aEnd.
Definition: trigo.cpp:129
double CrossProduct(const wxPoint &vectorA, const wxPoint &vectorB)
Determine the cross product.
Definition: trigo.h:198
void NEGATE_AND_NORMALIZE_ANGLE_POS(T &Angle)
Definition: trigo.h:362
double cosdecideg(double r, double a)
Circle generation utility: computes r * cos(a) Where a is in decidegrees, not in radians.
Definition: trigo.h:452
double sindecideg(double r, double a)
Circle generation utility: computes r * sin(a) Where a is in decidegrees, not in radians.
Definition: trigo.h:443
T NegateAndNormalizeAnglePos(T Angle)
Definition: trigo.h:349
double DEG2RAD(double deg)
Definition: trigo.h:229
bool InterceptsNegativeX(double aStartAngle, double aEndAngle)
Test if an arc from aStartAngle to aEndAngle crosses the negative X axis (180 degrees).
Definition: trigo.h:429
T NormalizeAnglePos(T Angle)
Normalize angle to be in the 0.0 .. 360.0 range: angle is in 1/10 degrees.
Definition: trigo.h:281
static DIRECTION_45::AngleType angle(const VECTOR2I &a, const VECTOR2I &b)
bool HitTestPoints(const wxPoint &pointA, const wxPoint &pointB, double threshold)
Test, if two points are near each other.
Definition: trigo.h:184
double DECIDEG2RAD(double deg)
Definition: trigo.h:233
double NormalizeAngleDegrees(double Angle, double aMin, double aMax)
Normalize angle to be aMin < angle <= aMax angle is in degrees.
Definition: trigo.h:327
double ArcTangente(int dy, int dx)
Definition: trigo.cpp:183
const VECTOR2I GetArcCenter(const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd)
Determine the center of an arc or circle given three points on its circumference.
Definition: trigo.cpp:454
T NormalizeAngle360Min(T Angle)
Normalize angle to be > -360.0 and < 360.0 Angle equal to -360 or +360 are set to 0.
Definition: trigo.h:254
double DistanceLinePoint(const wxPoint &linePointA, const wxPoint &linePointB, const wxPoint &referencePoint)
Compute the distance between a line and a reference point Reference: http://mathworld....
Definition: trigo.h:163