KiCad PCB EDA Suite
Loading...
Searching...
No Matches
shape_arc.cpp
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2017 CERN
5 * Copyright (C) 2019-2022 KiCad Developers, see AUTHORS.txt for contributors.
6 * @author Tomasz Wlostowski <[email protected]>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, you may find one here:
20 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
21 * or you may search the http://www.gnu.org website for the version 2 license,
22 * or you may write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
24 */
25
26#include <core/kicad_algo.h>
27#include <geometry/circle.h>
29#include <geometry/seg.h> // for SEG
30#include <geometry/shape_arc.h>
33#include <trigo.h>
34
35
36std::ostream& operator<<( std::ostream& aStream, const SHAPE_ARC& aArc )
37{
38 aStream << "Arc( P0=" << aArc.GetP0() << " P1=" << aArc.GetP1() << " Mid=" << aArc.GetArcMid()
39 << " Width=" << aArc.GetWidth() << " )";
40 return aStream;
41}
42
43
44SHAPE_ARC::SHAPE_ARC( const VECTOR2I& aArcCenter, const VECTOR2I& aArcStartPoint,
45 const EDA_ANGLE& aCenterAngle, int aWidth ) :
46 SHAPE( SH_ARC ),
47 m_width( aWidth )
48{
49 m_start = aArcStartPoint;
50
51 VECTOR2D mid = aArcStartPoint;
52 VECTOR2D end = aArcStartPoint;
53 VECTOR2D center = aArcCenter;
54
55 RotatePoint( mid, center, -aCenterAngle / 2.0 );
56 RotatePoint( end, center, -aCenterAngle );
57
58 m_mid = VECTOR2I( KiROUND( mid.x ), KiROUND( mid.y ) );
59 m_end = VECTOR2I( KiROUND( end.x ), KiROUND( end.y ) );
60
62}
63
64
65SHAPE_ARC::SHAPE_ARC( const VECTOR2I& aArcStart, const VECTOR2I& aArcMid,
66 const VECTOR2I& aArcEnd, int aWidth ) :
67 SHAPE( SH_ARC ),
68 m_start( aArcStart ),
69 m_mid( aArcMid ),
70 m_end( aArcEnd ),
71 m_width( aWidth )
72{
74}
75
76
77SHAPE_ARC::SHAPE_ARC( const SEG& aSegmentA, const SEG& aSegmentB, int aRadius, int aWidth ) :
78 SHAPE( SH_ARC )
79{
80 m_width = aWidth;
81
82 /*
83 * Construct an arc that is tangent to two segments with a given radius.
84 *
85 * p
86 * A
87 * A \
88 * / \
89 * / . . \ segB
90 * /. .\
91 * segA / c \
92 * / B
93 * /
94 * /
95 * B
96 *
97 *
98 * segA is the fist segment (with its points A and B)
99 * segB is the second segment (with its points A and B)
100 * p is the point at which segA and segB would intersect if they were projected
101 * c is the centre of the arc to be constructed
102 * rad is the radius of the arc to be constructed
103 *
104 * We can create two vectors, between point p and segA /segB
105 * pToA = p - segA.B //< note that segA.A would also be valid as it is colinear
106 * pToB = p - segB.B //< note that segB.A would also be valid as it is colinear
107 *
108 * Let the angle formed by segA and segB be called 'alpha':
109 * alpha = angle( pToA ) - angle( pToB )
110 *
111 * The distance PC can be computed as
112 * distPC = rad / abs( sin( alpha / 2 ) )
113 *
114 * The polar angle of the vector PC can be computed as:
115 * anglePC = angle( pToA ) + alpha / 2
116 *
117 * Therefore:
118 * C.x = P.x + distPC*cos( anglePC )
119 * C.y = P.y + distPC*sin( anglePC )
120 */
121
122 OPT_VECTOR2I p = aSegmentA.Intersect( aSegmentB, true, true );
123
124 if( !p || aSegmentA.Length() == 0 || aSegmentB.Length() == 0 )
125 {
126 // Catch bugs in debug
127 wxASSERT_MSG( false, "The input segments do not intersect or one is zero length." );
128
129 // Make a 180 degree arc around aSegmentA in case we end up here in release
130 m_start = aSegmentA.A;
131 m_end = aSegmentA.B;
132 m_mid = m_start;
133
134 VECTOR2I arcCenter = aSegmentA.Center();
135 RotatePoint( m_mid, arcCenter, ANGLE_90 ); // mid point at 90 degrees
136 }
137 else
138 {
139 VECTOR2I pToA = aSegmentA.B - *p;
140 VECTOR2I pToB = aSegmentB.B - *p;
141
142 if( pToA.EuclideanNorm() == 0 )
143 pToA = aSegmentA.A - *p;
144
145 if( pToB.EuclideanNorm() == 0 )
146 pToB = aSegmentB.A - *p;
147
148 EDA_ANGLE pToAangle( pToA );
149 EDA_ANGLE pToBangle( pToB );
150
151 EDA_ANGLE alpha = ( pToAangle - pToBangle ).Normalize180();
152
153 double distPC = (double) aRadius / abs( sin( alpha.AsRadians() / 2 ) );
154 EDA_ANGLE angPC = pToAangle - alpha / 2;
155 VECTOR2I arcCenter;
156
157 arcCenter.x = p->x + KiROUND( distPC * angPC.Cos() );
158 arcCenter.y = p->y + KiROUND( distPC * angPC.Sin() );
159
160 // The end points of the arc are the orthogonal projected lines from the line segments
161 // to the center of the arc
162 m_start = aSegmentA.LineProject( arcCenter );
163 m_end = aSegmentB.LineProject( arcCenter );
164
165 //The mid point is rotated start point around center, half the angle of the arc.
166 VECTOR2I startVector = m_start - arcCenter;
167 VECTOR2I endVector = m_end - arcCenter;
168
169 EDA_ANGLE startAngle( startVector );
170 EDA_ANGLE endAngle( endVector );
171 EDA_ANGLE midPointRotAngle = ( startAngle - endAngle ).Normalize180() / 2;
172
173 m_mid = m_start;
174 RotatePoint( m_mid, arcCenter, midPointRotAngle );
175 }
176
177 update_bbox();
178}
179
180
182 : SHAPE( SH_ARC )
183{
184 m_start = aOther.m_start;
185 m_end = aOther.m_end;
186 m_mid = aOther.m_mid;
187 m_width = aOther.m_width;
188 m_bbox = aOther.m_bbox;
189}
190
191
193 const EDA_ANGLE& aAngle, double aWidth )
194{
195 m_start = aStart;
196 m_mid = aStart;
197 m_end = aEnd;
198 m_width = aWidth;
199
200 VECTOR2I center( CalcArcCenter( aStart, aEnd, aAngle ) );
201
202 RotatePoint( m_mid, center, -aAngle / 2.0 );
203
204 update_bbox();
205
206 return *this;
207}
208
209
211 const VECTOR2I& aCenter, bool aClockwise,
212 double aWidth )
213{
214 VECTOR2I startLine = aStart - aCenter;
215 VECTOR2I endLine = aEnd - aCenter;
216
217 EDA_ANGLE startAngle( startLine );
218 EDA_ANGLE endAngle( endLine );
219
220 startAngle.Normalize();
221 endAngle.Normalize();
222
223 EDA_ANGLE angle = endAngle - startAngle;
224
225 if( aClockwise )
226 angle = angle.Normalize() - ANGLE_360;
227 else
228 angle = angle.Normalize();
229
230 m_start = aStart;
231 m_end = aEnd;
232 m_mid = aStart;
233
234 RotatePoint( m_mid, aCenter, -angle / 2.0 );
235
236 update_bbox();
237
238 return *this;
239}
240
241
242bool SHAPE_ARC::Collide( const SEG& aSeg, int aClearance, int* aActual, VECTOR2I* aLocation ) const
243{
244 if( aSeg.A == aSeg.B )
245 return Collide( aSeg.A, aClearance, aActual, aLocation );
246
247 VECTOR2I center = GetCenter();
248 CIRCLE circle( center, GetRadius() );
249
250 // Possible points of the collision are:
251 // 1. Intersetion of the segment with the full circle
252 // 2. Closest point on the segment to the center of the circle
253 // 3. Closest point on the segment to the end points of the arc
254 // 4. End points of the segment
255
256 std::vector<VECTOR2I> candidatePts = circle.Intersect( aSeg );
257
258 candidatePts.push_back( aSeg.NearestPoint( center ) );
259 candidatePts.push_back( aSeg.NearestPoint( m_start ) );
260 candidatePts.push_back( aSeg.NearestPoint( m_end ) );
261 candidatePts.push_back( aSeg.A );
262 candidatePts.push_back( aSeg.B );
263
264 for( const VECTOR2I& candidate : candidatePts )
265 {
266 if( Collide( candidate, aClearance, aActual, aLocation ) )
267 return true;
268 }
269
270 return false;
271}
272
273
274int SHAPE_ARC::IntersectLine( const SEG& aSeg, std::vector<VECTOR2I>* aIpsBuffer ) const
275{
276 if( aSeg.A == aSeg.B ) // One point does not define a line....
277 return 0;
278
279 CIRCLE circ( GetCenter(), GetRadius() );
280
281 std::vector<VECTOR2I> intersections = circ.IntersectLine( aSeg );
282
283 size_t originalSize = aIpsBuffer->size();
284
285 for( const VECTOR2I& intersection : intersections )
286 {
287 if( sliceContainsPoint( intersection ) )
288 aIpsBuffer->push_back( intersection );
289 }
290
291 return aIpsBuffer->size() - originalSize;
292}
293
294
295int SHAPE_ARC::Intersect( const SHAPE_ARC& aArc, std::vector<VECTOR2I>* aIpsBuffer ) const
296{
297 CIRCLE thiscirc( GetCenter(), GetRadius() );
298 CIRCLE othercirc( aArc.GetCenter(), aArc.GetRadius() );
299
300 std::vector<VECTOR2I> intersections = thiscirc.Intersect( othercirc );
301
302 size_t originalSize = aIpsBuffer->size();
303
304 for( const VECTOR2I& intersection : intersections )
305 {
306 if( sliceContainsPoint( intersection ) && aArc.sliceContainsPoint( intersection ) )
307 aIpsBuffer->push_back( intersection );
308 }
309
310 return aIpsBuffer->size() - originalSize;
311}
312
313
315{
316 std::vector<VECTOR2I> points;
317 // Put start and end points in the point list
318 points.push_back( m_start );
319 points.push_back( m_end );
320
321 EDA_ANGLE start_angle = GetStartAngle();
322 EDA_ANGLE end_angle = start_angle + GetCentralAngle();
323
324 // we always count quadrants clockwise (increasing angle)
325 if( start_angle > end_angle )
326 std::swap( start_angle, end_angle );
327
328 int quad_angle_start = std::ceil( start_angle.AsDegrees() / 90.0 );
329 int quad_angle_end = std::floor( end_angle.AsDegrees() / 90.0 );
330
331 VECTOR2I center = GetCenter();
332 const int radius = KiROUND( GetRadius() );
333
334 // count through quadrants included in arc
335 for( int quad_angle = quad_angle_start; quad_angle <= quad_angle_end; ++quad_angle )
336 {
337 VECTOR2I quad_pt = center;
338
339 switch( quad_angle % 4 )
340 {
341 case 0: quad_pt += { radius, 0 }; break;
342 case 1: case -3: quad_pt += { 0, radius }; break;
343 case 2: case -2: quad_pt += { -radius, 0 }; break;
344 case 3: case -1: quad_pt += { 0, -radius }; break;
345 default:
346 assert( false );
347 }
348
349 points.push_back( quad_pt );
350 }
351
352 m_bbox.Compute( points );
353}
354
355
356const BOX2I SHAPE_ARC::BBox( int aClearance ) const
357{
358 BOX2I bbox( m_bbox );
359
360 if( m_width != 0 )
361 bbox.Inflate( KiROUND( m_width / 2.0 ) + 1 );
362
363 if( aClearance != 0 )
364 bbox.Inflate( aClearance );
365
366 return bbox;
367}
368
369
371{
372 return GetCentralAngle() < ANGLE_0;
373}
374
375
377{
378 const static int s_epsilon = 8;
379
380 CIRCLE fullCircle( GetCenter(), GetRadius() );
381 VECTOR2I nearestPt = fullCircle.NearestPoint( aP );
382
383 if( ( nearestPt - m_start ).SquaredEuclideanNorm() <= s_epsilon )
384 return m_start;
385
386 if( ( nearestPt - m_end ).SquaredEuclideanNorm() <= s_epsilon )
387 return m_end;
388
389 if( sliceContainsPoint( nearestPt ) )
390 return nearestPt;
391
392 if( ( aP - m_start ).SquaredEuclideanNorm() <= ( aP - m_end ).SquaredEuclideanNorm() )
393 return m_start;
394 else
395 return m_end;
396}
397
398
399bool SHAPE_ARC::Collide( const VECTOR2I& aP, int aClearance, int* aActual,
400 VECTOR2I* aLocation ) const
401{
402 int minDist = aClearance + m_width / 2;
403 auto bbox = BBox( minDist );
404
405 // Fast check using bounding box:
406 if( !bbox.Contains( aP ) )
407 return false;
408
409 CIRCLE fullCircle( GetCenter(), GetRadius() );
410 VECTOR2I nearestPt = fullCircle.NearestPoint( aP );
411
412 int dist = ( nearestPt - aP ).EuclideanNorm();
413
414 // If not a 360 degree arc, need to use arc angles to decide if point collides
415 if( m_start != m_end )
416 {
417 bool ccw = GetCentralAngle() > ANGLE_0;
418 EDA_ANGLE angleToPt( aP - fullCircle.Center ); // Angle from center to the point
419 EDA_ANGLE rotatedPtAngle = ( angleToPt.Normalize() - GetStartAngle() ).Normalize();
420 EDA_ANGLE rotatedEndAngle = ( GetEndAngle() - GetStartAngle() ).Normalize();
421
422 if( ( ccw && rotatedPtAngle > rotatedEndAngle )
423 || ( !ccw && rotatedPtAngle < rotatedEndAngle ) )
424 {
425 int distStartpt = ( aP - m_start ).EuclideanNorm();
426 int distEndpt = ( aP - m_end ).EuclideanNorm();
427 dist = std::min( distStartpt, distEndpt );
428 }
429 }
430
431 if( dist <= minDist )
432 {
433 if( aLocation )
434 *aLocation = nearestPt;
435
436 if( aActual )
437 *aActual = std::max( 0, dist - m_width / 2 );
438
439 return true;
440 }
441
442 return false;
443}
444
445
447{
448 EDA_ANGLE angle( m_start - GetCenter() );
449 return angle.Normalize();
450}
451
452
454{
455 EDA_ANGLE angle( m_end - GetCenter() );
456 return angle.Normalize();
457}
458
459
461{
462 return CalcArcCenter( m_start, m_mid, m_end );
463}
464
465
467{
468 double radius = GetRadius();
469 EDA_ANGLE includedAngle = GetCentralAngle();
470
471 return std::abs( radius * includedAngle.AsRadians() );
472}
473
474
476{
477 // Arcs with same start and end points can be 0 deg or 360 deg arcs.
478 // However, they are expected to be circles.
479 // So return 360 degrees as central arc:
480 if( m_start == m_end )
481 return ANGLE_360;
482
483 VECTOR2I center = GetCenter();
484 EDA_ANGLE angle1 = EDA_ANGLE( m_mid - center ) - EDA_ANGLE( m_start - center );
485 EDA_ANGLE angle2 = EDA_ANGLE( m_end - center ) - EDA_ANGLE( m_mid - center );
486
487 return angle1.Normalize180() + angle2.Normalize180();
488}
489
490
492{
493 return std::sqrt( ( m_start - GetCenter() ).SquaredEuclideanNorm() );
494}
495
496
498 double* aEffectiveAccuracy ) const
499{
501 double r = GetRadius();
503 VECTOR2I c = GetCenter();
505
506 SEG startToEnd( GetP0(), GetP1() );
507 double halfAccuracy = std::max( 1.0, aAccuracy / 2 );
508
509 int n;
510
511 // To calculate the arc to segment count, use the external radius instead of the radius.
512 // for a arc with small radius and large width, the difference can be significant
513 double external_radius = r+(m_width/2);
514 double effectiveAccuracy;
515
516 if( external_radius < halfAccuracy
517 || startToEnd.Distance( GetArcMid() ) < halfAccuracy ) // Should be a very rare case
518 {
519 // In this case, the arc is approximated by one segment, with a effective error
520 // between -aAccuracy/2 and +aAccuracy/2, as expected.
521 n = 0;
522 effectiveAccuracy = external_radius;
523 }
524 else
525 {
526 n = GetArcToSegmentCount( external_radius, aAccuracy, ca );
527
528 // Recalculate the effective error of approximation, that can be < aAccuracy
529 int seg360 = n * 360.0 / fabs( ca.AsDegrees() );
530 effectiveAccuracy = CircleToEndSegmentDeltaRadius( external_radius, seg360 );
531 }
532
533 // Split the error on either side of the arc. Since we want the start and end points
534 // to be exactly on the arc, the first and last segments need to be shorter to stay within
535 // the error band (since segments normally start 1/2 the error band outside the arc).
536 r += effectiveAccuracy / 2;
537 n = n * 2;
538
539 rv.Append( m_start );
540
541 for( int i = 1; i < n ; i += 2 )
542 {
543 EDA_ANGLE a = sa;
544
545 if( n != 0 )
546 a += ( ca * i ) / n;
547
548 double x = c.x + r * a.Cos();
549 double y = c.y + r * a.Sin();
550
551 rv.Append( KiROUND( x ), KiROUND( y ) );
552 }
553
554 rv.Append( m_end );
555
556 if( aEffectiveAccuracy )
557 *aEffectiveAccuracy = effectiveAccuracy;
558
559 return rv;
560}
561
562
563void SHAPE_ARC::Move( const VECTOR2I& aVector )
564{
565 m_start += aVector;
566 m_end += aVector;
567 m_mid += aVector;
568 update_bbox();
569}
570
571
572void SHAPE_ARC::Rotate( const EDA_ANGLE& aAngle, const VECTOR2I& aCenter )
573{
574 RotatePoint( m_start, aCenter, aAngle );
575 RotatePoint( m_end, aCenter, aAngle );
576 RotatePoint( m_mid, aCenter, aAngle );
577
578 update_bbox();
579}
580
581
582void SHAPE_ARC::Mirror( bool aX, bool aY, const VECTOR2I& aVector )
583{
584 if( aX )
585 {
586 m_start.x = -m_start.x + 2 * aVector.x;
587 m_end.x = -m_end.x + 2 * aVector.x;
588 m_mid.x = -m_mid.x + 2 * aVector.x;
589 }
590
591 if( aY )
592 {
593 m_start.y = -m_start.y + 2 * aVector.y;
594 m_end.y = -m_end.y + 2 * aVector.y;
595 m_mid.y = -m_mid.y + 2 * aVector.y;
596 }
597
598 update_bbox();
599}
600
601
602void SHAPE_ARC::Mirror( const SEG& axis )
603{
604 m_start = axis.ReflectPoint( m_start );
605 m_end = axis.ReflectPoint( m_end );
606 m_mid = axis.ReflectPoint( m_mid );
607
608 update_bbox();
609}
610
611
613{
614 std::swap( m_start, m_end );
615}
616
617
619{
620 return SHAPE_ARC( m_end, m_mid, m_start, m_width );
621}
622
623
625{
628 EDA_ANGLE ea = sa + ca;
629
630 EDA_ANGLE phi( p - GetCenter() ); // Angle from center to the point
631 phi.Normalize();
632
633 if( ca >= ANGLE_0 )
634 {
635 while( phi < sa )
636 phi += ANGLE_360;
637
638 return phi >= sa && phi <= ea;
639 }
640 else
641 {
642 while( phi > sa )
643 phi -= ANGLE_360;
644
645 return phi <= sa && phi >= ea;
646 }
647}
648
649
650void SHAPE_ARC::TransformToPolygon( SHAPE_POLY_SET& aBuffer, int aError, ERROR_LOC aErrorLoc ) const
651{
652 TransformArcToPolygon( aBuffer, m_start, m_mid, m_end, m_width, aError, aErrorLoc );
653}
BOX2< Vec > & Inflate(coord_type dx, coord_type dy)
Inflates the rectangle horizontally by dx and vertically by dy.
Definition: box2.h:507
void Compute(const Container &aPointList)
Compute the bounding box from a given list of points.
Definition: box2.h:83
Represent basic circle geometry with utility geometry functions.
Definition: circle.h:33
VECTOR2I Center
Public to make access simpler.
Definition: circle.h:116
std::vector< VECTOR2I > Intersect(const CIRCLE &aCircle) const
Compute the intersection points between this circle and aCircle.
Definition: circle.cpp:209
std::vector< VECTOR2I > IntersectLine(const SEG &aLine) const
Compute the intersection points between this circle and aLine.
Definition: circle.cpp:288
VECTOR2I NearestPoint(const VECTOR2I &aP) const
Compute the point on the circumference of the circle that is the closest to aP.
Definition: circle.cpp:197
EDA_ANGLE Normalize()
Definition: eda_angle.h:255
double Sin() const
Definition: eda_angle.h:212
double AsDegrees() const
Definition: eda_angle.h:155
EDA_ANGLE Normalize180()
Definition: eda_angle.h:294
double AsRadians() const
Definition: eda_angle.h:159
double Cos() const
Definition: eda_angle.h:227
Definition: seg.h:42
const VECTOR2I ReflectPoint(const VECTOR2I &aP) const
Reflect a point using this segment as axis.
Definition: seg.cpp:291
VECTOR2I A
Definition: seg.h:49
VECTOR2I B
Definition: seg.h:50
const VECTOR2I NearestPoint(const VECTOR2I &aP) const
Compute a point on the segment (this) that is closest to point aP.
Definition: seg.cpp:269
int Length() const
Return the length (this).
Definition: seg.h:326
OPT_VECTOR2I Intersect(const SEG &aSeg, bool aIgnoreEndpoints=false, bool aLines=false) const
Compute intersection point of segment (this) with segment aSeg.
Definition: seg.cpp:196
VECTOR2I Center() const
Definition: seg.h:362
int Distance(const SEG &aSeg) const
Compute minimum Euclidean distance to segment aSeg.
Definition: seg.cpp:329
VECTOR2I LineProject(const VECTOR2I &aP) const
Compute the perpendicular projection point of aP on a line passing through ends of the segment.
Definition: seg.cpp:312
EDA_ANGLE GetCentralAngle() const
Definition: shape_arc.cpp:475
const VECTOR2I & GetArcMid() const
Definition: shape_arc.h:114
bool IsClockwise() const
Definition: shape_arc.cpp:370
void Move(const VECTOR2I &aVector) override
Definition: shape_arc.cpp:563
SHAPE_ARC & ConstructFromStartEndAngle(const VECTOR2I &aStart, const VECTOR2I &aEnd, const EDA_ANGLE &aAngle, double aWidth=0)
Construct this arc from the given start, end and angle.
Definition: shape_arc.cpp:192
const BOX2I BBox(int aClearance=0) const override
Compute a bounding box of the shape, with a margin of aClearance a collision.
Definition: shape_arc.cpp:356
EDA_ANGLE GetEndAngle() const
Definition: shape_arc.cpp:453
double GetLength() const
Definition: shape_arc.cpp:466
BOX2I m_bbox
Definition: shape_arc.h:269
void Rotate(const EDA_ANGLE &aAngle, const VECTOR2I &aCenter) override
Rotate the arc by a given angle about a point.
Definition: shape_arc.cpp:572
bool sliceContainsPoint(const VECTOR2I &p) const
Definition: shape_arc.cpp:624
VECTOR2I NearestPoint(const VECTOR2I &aP) const
Definition: shape_arc.cpp:376
SHAPE_ARC()
Definition: shape_arc.h:40
int GetWidth() const
Definition: shape_arc.h:159
VECTOR2I m_mid
Definition: shape_arc.h:265
SHAPE_ARC & ConstructFromStartEndCenter(const VECTOR2I &aStart, const VECTOR2I &aEnd, const VECTOR2I &aCenter, bool aClockwise=false, double aWidth=0)
Constructs this arc from the given start, end and center.
Definition: shape_arc.cpp:210
SHAPE_ARC Reversed() const
Definition: shape_arc.cpp:618
int m_width
Definition: shape_arc.h:268
const VECTOR2I & GetP1() const
Definition: shape_arc.h:113
int IntersectLine(const SEG &aSeg, std::vector< VECTOR2I > *aIpsBuffer) const
Find intersection points between this arc and aSeg, treating aSeg as an infinite line.
Definition: shape_arc.cpp:274
VECTOR2I m_end
Definition: shape_arc.h:266
bool Collide(const SEG &aSeg, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const override
Check if the boundary of shape (this) lies closer to the segment aSeg than aClearance,...
Definition: shape_arc.cpp:242
const SHAPE_LINE_CHAIN ConvertToPolyline(double aAccuracy=DefaultAccuracyForPCB(), double *aEffectiveAccuracy=nullptr) const
Construct a SHAPE_LINE_CHAIN of segments from a given arc.
Definition: shape_arc.cpp:497
int Intersect(const SHAPE_ARC &aArc, std::vector< VECTOR2I > *aIpsBuffer) const
Find intersection points between this arc and aArc.
Definition: shape_arc.cpp:295
double GetRadius() const
Definition: shape_arc.cpp:491
EDA_ANGLE GetStartAngle() const
Definition: shape_arc.cpp:446
void update_bbox()
Definition: shape_arc.cpp:314
void TransformToPolygon(SHAPE_POLY_SET &aBuffer, int aError, ERROR_LOC aErrorLoc) const override
Fills a SHAPE_POLY_SET with a polygon representation of this shape.
Definition: shape_arc.cpp:650
void Reverse()
Definition: shape_arc.cpp:612
VECTOR2I GetCenter() const
Definition: shape_arc.cpp:460
void Mirror(bool aX=true, bool aY=false, const VECTOR2I &aVector={ 0, 0 })
Definition: shape_arc.cpp:582
bool ccw(const VECTOR2I &aA, const VECTOR2I &aB, const VECTOR2I &aC) const
Definition: shape_arc.h:253
const VECTOR2I & GetP0() const
Definition: shape_arc.h:112
VECTOR2I m_start
Definition: shape_arc.h:264
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
void Append(int aX, int aY, bool aAllowDuplication=false)
Append a new point at the end of the line chain.
Represent a set of closed polygons.
An abstract shape on 2D plane.
Definition: shape.h:126
T EuclideanNorm() const
Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
Definition: vector2d.h:265
void TransformArcToPolygon(SHAPE_POLY_SET &aBuffer, const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd, int aWidth, int aError, ERROR_LOC aErrorLoc)
Convert arc to multiple straight segments.
static constexpr EDA_ANGLE ANGLE_0
Definition: eda_angle.h:435
static constexpr EDA_ANGLE ANGLE_90
Definition: eda_angle.h:437
static constexpr EDA_ANGLE ANGLE_360
Definition: eda_angle.h:441
a few functions useful in geometry calculations.
int CircleToEndSegmentDeltaRadius(int aInnerCircleRadius, int aSegCount)
ERROR_LOC
When approximating an arc or circle, should the error be placed on the outside or inside of the curve...
int GetArcToSegmentCount(int aRadius, int aErrorMax, const EDA_ANGLE &aArcAngle)
EDA_ANGLE abs(const EDA_ANGLE &aAngle)
Definition: eda_angle.h:424
std::optional< VECTOR2I > OPT_VECTOR2I
Definition: seg.h:39
@ SH_ARC
circular arc
Definition: shape.h:54
std::ostream & operator<<(std::ostream &aStream, const SHAPE_ARC &aArc)
Definition: shape_arc.cpp:36
void RotatePoint(int *pX, int *pY, const EDA_ANGLE &aAngle)
Calculate the new point of coord coord pX, pY, for a rotation center 0, 0.
Definition: trigo.cpp:228
const VECTOR2I CalcArcCenter(const VECTOR2I &aStart, const VECTOR2I &aMid, const VECTOR2I &aEnd)
Determine the center of an arc or circle given three points on its circumference.
Definition: trigo.cpp:520
double EuclideanNorm(const VECTOR2I &vector)
Definition: trigo.h:128
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:85
VECTOR2< int > VECTOR2I
Definition: vector2d.h:588