KiCad PCB EDA Suite
Loading...
Searching...
No Matches
teardrop_utils.cpp
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2021 Jean-Pierre Charras, jp.charras at wanadoo.fr
5 * Copyright (C) 2023-2024 KiCad Developers, see AUTHORS.txt for contributors.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, you may find one here:
19 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20 * or you may search the http://www.gnu.org website for the version 2 license,
21 * or you may write to the Free Software Foundation, Inc.,
22 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25/*
26 * Some calculations (mainly computeCurvedForRoundShape) are derived from
27 * https://github.com/NilujePerchut/kicad_scripts/tree/master/teardrops
28 */
29
31#include <pcb_track.h>
32#include <pad.h>
33#include <zone_filler.h>
34#include <board_commit.h>
35#include <drc/drc_rtree.h>
36
37#include "teardrop.h"
41#include <bezier_curves.h>
42
43#include <wx/log.h>
44
45
46void TRACK_BUFFER::AddTrack( PCB_TRACK* aTrack, int aLayer, int aNetcode )
47{
48 auto item = m_map_tracks.find( idxFromLayNet( aLayer, aNetcode ) );
49 std::vector<PCB_TRACK*>* buffer;
50
51 if( item == m_map_tracks.end() )
52 {
53 buffer = new std::vector<PCB_TRACK*>;
54 m_map_tracks[idxFromLayNet( aLayer, aNetcode )] = buffer;
55 }
56 else
57 {
58 buffer = (*item).second;
59 }
60
61 buffer->push_back( aTrack );
62}
63
64
66{
67 if( aItem->Type() == PCB_VIA_T )
68 {
69 PCB_VIA* via = static_cast<PCB_VIA*>( aItem );
70 return via->GetWidth();
71 }
72 else if( aItem->Type() == PCB_PAD_T )
73 {
74 PAD* pad = static_cast<PAD*>( aItem );
75 return std::min( pad->GetSize().x, pad->GetSize().y );
76 }
77 else if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_ARC_T )
78 {
79 PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
80 return track->GetWidth();
81 }
82
83 return 0;
84}
85
86
88{
89 if( aItem->Type() == PCB_PAD_T )
90 {
91 PAD* pad = static_cast<PAD*>( aItem );
92
93 return pad->GetShape() == PAD_SHAPE::CIRCLE
94 || ( pad->GetShape() == PAD_SHAPE::OVAL && pad->GetSize().x == pad->GetSize().y );
95 }
96
97 return true;
98}
99
100
102{
103 for( PCB_TRACK* track : m_board->Tracks() )
104 {
105 if( track->Type() == PCB_TRACE_T || track->Type() == PCB_ARC_T )
106 {
107 m_tracksRTree.Insert( track, track->GetLayer() );
108 m_trackLookupList.AddTrack( track, track->GetLayer(), track->GetNetCode() );
109 }
110 }
111}
112
113
115{
116 for( ZONE* zone: m_board->Zones() )
117 {
118 // Skip teardrops
119 if( zone->IsTeardropArea() )
120 continue;
121
122 // Only consider zones on the same layer
123 if( !zone->IsOnLayer( aTrack->GetLayer() ) )
124 continue;
125
126 if( zone->GetNetCode() == aTrack->GetNetCode() )
127 {
128 if( zone->Outline()->Contains( VECTOR2I( aPadOrVia->GetPosition() ) ) )
129 {
130 // If the first item is a pad, ensure it can be connected to the zone
131 if( aPadOrVia->Type() == PCB_PAD_T )
132 {
133 PAD *pad = static_cast<PAD*>( aPadOrVia );
134
135 if( zone->GetPadConnection() == ZONE_CONNECTION::NONE
136 || pad->GetZoneConnectionOverrides( nullptr ) == ZONE_CONNECTION::NONE )
137 {
138 return false;
139 }
140 }
141
142 return true;
143 }
144 }
145 }
146
147 return false;
148}
149
150
152 const VECTOR2I& aEndPoint ) const
153{
154 int matches = 0; // Count of candidates: only 1 is acceptable
155 PCB_TRACK* candidate = nullptr; // a reference to the track connected
156
157 m_tracksRTree.QueryColliding( aTrackRef, aTrackRef->GetLayer(), aTrackRef->GetLayer(),
158 // Filter:
159 [&]( BOARD_ITEM* trackItem ) -> bool
160 {
161 return trackItem != aTrackRef;
162 },
163 // Visitor
164 [&]( BOARD_ITEM* trackItem ) -> bool
165 {
166 PCB_TRACK* curr_track = static_cast<PCB_TRACK*>( trackItem );
167
168 // IsPointOnEnds() returns 0, EDA_ITEM_FLAGS::STARTPOINT or EDA_ITEM_FLAGS::ENDPOINT
169 if( EDA_ITEM_FLAGS match = curr_track->IsPointOnEnds( aEndPoint, m_tolerance ) )
170 {
171 // if faced with a Y junction, choose the track longest segment as candidate
172 matches++;
173
174 if( matches > 1 )
175 {
176 double previous_len = candidate->GetLength();
177 double curr_len = curr_track->GetLength();
178
179 if( previous_len >= curr_len )
180 return true;
181 }
182
183 aMatchType = match;
184 candidate = curr_track;
185 }
186
187 return true;
188 },
189 0 );
190
191 return candidate;
192}
193
194
198static VECTOR2D NormalizeVector( const VECTOR2I& aVector )
199{
200 VECTOR2D vect( aVector );
201 double norm = vect.EuclideanNorm();
202 return vect / norm;
203}
204
205
206/*
207 * Compute the curve part points for teardrops connected to a round shape
208 * The Bezier curve control points are optimized for a round pad/via shape,
209 * and do not give a good curve shape for other pad shapes
210 */
212 std::vector<VECTOR2I>& aPoly,
213 int aTrackHalfWidth, const VECTOR2D& aTrackDir,
214 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos,
215 std::vector<VECTOR2I>& pts ) const
216{
217 // in pts:
218 // A and B are points on the track ( pts[0] and pts[1] )
219 // C and E are points on the aViaPad ( pts[2] and pts[4] )
220 // D is the aViaPad centre ( pts[3] )
221 double Vpercent = aParams.m_BestWidthRatio;
222 int td_height = KiROUND( GetWidth( aOther ) * Vpercent );
223
224 // First, calculate a aVpercent equivalent to the td_height clamped by aTdMaxHeight
225 // We cannot use the initial aVpercent because it gives bad shape with points
226 // on aViaPad calculated for a clamped aViaPad size
227 if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_height )
228 Vpercent *= (double) aParams.m_TdMaxWidth / td_height;
229
230 int radius = GetWidth( aOther ) / 2;
231
232 // Don't divide by zero. No good can come of that.
233 wxCHECK2( radius != 0, radius = 1 );
234
235 double minVpercent = double( aTrackHalfWidth ) / radius;
236 double weaken = (Vpercent - minVpercent) / ( 1 - minVpercent ) / radius;
237
238 double biasBC = 0.5 * SEG( pts[1], pts[2] ).Length();
239 double biasAE = 0.5 * SEG( pts[4], pts[0] ).Length();
240
241 VECTOR2I vecC = (VECTOR2I)pts[2] - aOtherPos;
242 VECTOR2I tangentC = VECTOR2I( pts[2].x - vecC.y * biasBC * weaken,
243 pts[2].y + vecC.x * biasBC * weaken );
244 VECTOR2I vecE = (VECTOR2I)pts[4] - aOtherPos;
245 VECTOR2I tangentE = VECTOR2I( pts[4].x + vecE.y * biasAE * weaken,
246 pts[4].y - vecE.x * biasAE * weaken );
247
248 VECTOR2I tangentB = VECTOR2I( pts[1].x - aTrackDir.x * biasBC, pts[1].y - aTrackDir.y * biasBC );
249 VECTOR2I tangentA = VECTOR2I( pts[0].x - aTrackDir.x * biasAE, pts[0].y - aTrackDir.y * biasAE );
250
251 std::vector<VECTOR2I> curve_pts;
252 BEZIER_POLY( pts[1], tangentB, tangentC, pts[2] ).GetPoly( curve_pts, ARC_HIGH_DEF );
253
254 for( VECTOR2I& corner: curve_pts )
255 aPoly.push_back( corner );
256
257 aPoly.push_back( pts[3] );
258
259 curve_pts.clear();
260 BEZIER_POLY( pts[4], tangentE, tangentA, pts[0] ).GetPoly( curve_pts, ARC_HIGH_DEF );
261
262 for( VECTOR2I& corner: curve_pts )
263 aPoly.push_back( corner );
264}
265
266
267/*
268 * Compute the curve part points for teardrops connected to a rectangular/polygonal shape
269 * The Bezier curve control points are not optimized for a special shape
270 */
272 std::vector<VECTOR2I>& aPoly, int aTdWidth,
273 int aTrackHalfWidth,
274 std::vector<VECTOR2I>& aPts,
275 const VECTOR2I& aIntersection) const
276{
277 // in aPts:
278 // A and B are points on the track ( pts[0] and pts[1] )
279 // C and E are points on the pad/via ( pts[2] and pts[4] )
280 // D is the aViaPad centre ( pts[3] )
281
282 // side1 is( aPts[1], aPts[2] ); from track to via
283 VECTOR2I side1( aPts[2] - aPts[1] ); // vector from track to via
284 // side2 is ( aPts[4], aPts[0] ); from via to track
285 VECTOR2I side2( aPts[4] - aPts[0] ); // vector from track to via
286
287 VECTOR2I trackDir( aIntersection - ( aPts[0] + aPts[1] ) / 2 );
288
289 std::vector<VECTOR2I> curve_pts;
290
291 // Note: This side is from track to pad/via
292 VECTOR2I ctrl1 = aPts[1] + trackDir.Resize( side1.EuclideanNorm() / 4 );
293 VECTOR2I ctrl2 = ( aPts[2] + aIntersection ) / 2;
294
295 BEZIER_POLY( aPts[1], ctrl1, ctrl2, aPts[2] ).GetPoly( curve_pts, ARC_HIGH_DEF );
296
297 for( VECTOR2I& corner: curve_pts )
298 aPoly.push_back( corner );
299
300 aPoly.push_back( aPts[3] );
301
302 // Note: This side is from pad/via to track
303 curve_pts.clear();
304
305 ctrl1 = ( aPts[4] + aIntersection ) / 2;
306 ctrl2 = aPts[0] + trackDir.Resize( side2.EuclideanNorm() / 4 );
307
308 BEZIER_POLY( aPts[4], ctrl1, ctrl2, aPts[0] ).GetPoly( curve_pts, ARC_HIGH_DEF );
309
310 for( VECTOR2I& corner: curve_pts )
311 aPoly.push_back( corner );
312}
313
314
316 BOARD_ITEM* aItem, const VECTOR2I& aPos,
317 std::vector<VECTOR2I>& aPts ) const
318{
319 // Compute the 2 anchor points on pad/via/track of the teardrop shape
320
321 SHAPE_POLY_SET c_buffer;
322
323 // m_BestWidthRatio is the factor to calculate the teardrop preferred width.
324 // teardrop width = pad, via or track size * m_BestWidthRatio (m_BestWidthRatio <= 1.0)
325 // For rectangular (and similar) shapes, the preferred_width is calculated from the min
326 // dim of the rectangle
327
328 int preferred_width = KiROUND( GetWidth( aItem ) * aParams.m_BestWidthRatio );
329
330 // force_clip = true to force the pad/via/track polygon to be clipped to follow
331 // constraints
332 // Clipping is also needed for rectangular shapes, because the teardrop shape is restricted
333 // to a polygonal area smaller than the pad area (the teardrop height use the smaller value
334 // of X and Y sizes).
335 bool force_clip = aParams.m_BestWidthRatio < 1.0;
336
337 // To find the anchor points on the pad/via/track shape, we build the polygonal shape, and
338 // clip the polygon to the max size (preferred_width or m_TdMaxWidth) by a rectangle
339 // centered on the axis of the expected teardrop shape.
340 // (only reduce the size of polygonal shape does not give good anchor points)
341 if( IsRound( aItem ) )
342 {
343 TransformCircleToPolygon( c_buffer, aPos, GetWidth( aItem ) / 2, ARC_LOW_DEF,
344 ERROR_INSIDE, 16 );
345 }
346 else // Only PADS can have a not round shape
347 {
348 PAD* pad = static_cast<PAD*>( aItem );
349
350 force_clip = true;
351
352 preferred_width = KiROUND( GetWidth( pad ) * aParams.m_BestWidthRatio );
353 pad->TransformShapeToPolygon( c_buffer, aLayer, 0, ARC_LOW_DEF, ERROR_INSIDE );
354 }
355
356 // Clip the pad/via/track shape to match the m_TdMaxWidth constraint, and for non-round pads,
357 // clip the shape to the smallest of size.x and size.y values.
358 if( force_clip || ( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < preferred_width ) )
359 {
360 int halfsize = std::min( aParams.m_TdMaxWidth, preferred_width )/2;
361
362 // teardrop_axis is the line from anchor point on the track and the end point
363 // of the teardrop in the pad/via
364 // this is the teardrop_axis of the teardrop shape to build
365 VECTOR2I ref_on_track = ( aPts[0] + aPts[1] ) / 2;
366 VECTOR2I teardrop_axis( aPts[3] - ref_on_track );
367
368 EDA_ANGLE orient( teardrop_axis );
369 int len = teardrop_axis.EuclideanNorm();
370
371 // Build the constraint polygon: a rectangle with
372 // length = dist between the point on track and the pad/via pos
373 // height = m_TdMaxWidth or aViaPad.m_Width
374 SHAPE_POLY_SET clipping_rect;
375 clipping_rect.NewOutline();
376
377 // Build a horizontal rect: it will be rotated later
378 clipping_rect.Append( 0, - halfsize );
379 clipping_rect.Append( 0, halfsize );
380 clipping_rect.Append( len, halfsize );
381 clipping_rect.Append( len, - halfsize );
382
383 clipping_rect.Rotate( -orient );
384 clipping_rect.Move( ref_on_track );
385
386 // Clip the shape to the max allowed teadrop area
387 c_buffer.BooleanIntersection( clipping_rect, SHAPE_POLY_SET::PM_FAST );
388 }
389
390 /* in aPts:
391 * A and B are points on the track ( aPts[0] and aPts[1] )
392 * C and E are points on the aViaPad ( aPts[2] and aPts[4] )
393 * D is midpoint behind the aViaPad centre ( aPts[3] )
394 */
395
396 SHAPE_LINE_CHAIN& padpoly = c_buffer.Outline(0);
397 std::vector<VECTOR2I> points = padpoly.CPoints();
398
399 std::vector<VECTOR2I> initialPoints;
400 initialPoints.push_back( aPts[0] );
401 initialPoints.push_back( aPts[1] );
402
403 for( const VECTOR2I& pt: points )
404 initialPoints.emplace_back( pt.x, pt.y );
405
406 std::vector<VECTOR2I> hull;
407 BuildConvexHull( hull, initialPoints );
408
409 // Search for end points of segments starting at aPts[0] or aPts[1]
410 // In some cases, in convex hull, only one point (aPts[0] or aPts[1]) is still in list
411 VECTOR2I PointC;
412 VECTOR2I PointE;
413 int found_start = -1; // 2 points (one start and one end) should be found
414 int found_end = -1;
415
416 VECTOR2I start = aPts[0];
417 VECTOR2I pend = aPts[1];
418
419 for( unsigned ii = 0, jj = 0; jj < hull.size(); ii++, jj++ )
420 {
421 unsigned next = ii+ 1;
422
423 if( next >= hull.size() )
424 next = 0;
425
426 int prev = ii -1;
427
428 if( prev < 0 )
429 prev = hull.size()-1;
430
431 if( hull[ii] == start )
432 {
433 // the previous or the next point is candidate:
434 if( hull[next] != pend )
435 PointE = hull[next];
436 else
437 PointE = hull[prev];
438
439 found_start = ii;
440 }
441
442 if( hull[ii] == pend )
443 {
444 if( hull[next] != start )
445 PointC = hull[next];
446 else
447 PointC = hull[prev];
448
449 found_end = ii;
450 }
451 }
452
453 if( found_start < 0 ) // PointE was not initialized, because start point does not exit
454 {
455 int ii = found_end-1;
456
457 if( ii < 0 )
458 ii = hull.size()-1;
459
460 PointE = hull[ii];
461 }
462
463 if( found_end < 0 ) // PointC was not initialized, because end point does not exit
464 {
465 int ii = found_start-1;
466
467 if( ii < 0 )
468 ii = hull.size()-1;
469
470 PointC = hull[ii];
471 }
472
473 aPts[2] = PointC;
474 aPts[4] = PointE;
475
476 // Now we have to know if the choice aPts[2] = PointC is the best, or if
477 // aPts[2] = PointE is better.
478 // A criteria is to calculate the polygon area in these 2 cases, and choose the case
479 // that gives the bigger area, because the segments starting at PointC and PointE
480 // maximize their distance.
481 SHAPE_LINE_CHAIN dummy1( aPts, true );
482 double area1 = dummy1.Area();
483
484 std::swap( aPts[2], aPts[4] );
485 SHAPE_LINE_CHAIN dummy2( aPts, true );
486 double area2 = dummy2.Area();
487
488 if( area1 > area2 ) // The first choice (without swapping) is the better.
489 std::swap( aPts[2], aPts[4] );
490
491 return true;
492}
493
494
496 VECTOR2I& aStartPoint, VECTOR2I& aEndPoint,
497 VECTOR2I& aIntersection, PCB_TRACK*& aTrack,
498 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos,
499 int* aEffectiveTeardropLen ) const
500{
501 bool found = true;
502 VECTOR2I start = aTrack->GetStart(); // one reference point on the track, inside teardrop
503 VECTOR2I end = aTrack->GetEnd(); // the second reference point on the track, outside teardrop
504 int radius = GetWidth( aOther ) / 2;
505
506 // Requested length of the teardrop:
507 int targetLength = KiROUND( GetWidth( aOther ) * aParams.m_BestLengthRatio );
508
509 if( aParams.m_TdMaxLen > 0 )
510 targetLength = std::min( aParams.m_TdMaxLen, targetLength );
511
512 // actualTdLen is the distance between start and the teardrop point on the segment from start to end
513 int actualTdLen;
514 bool need_swap = false; // true if the start and end points of the current track are swapped
515
516 // aTrack is expected to have one end inside the via/pad and the other end outside
517 // so ensure the start point is inside the via/pad
518 if( !aOther->HitTest( start, 0 ) )
519 {
520 std::swap( start, end );
521 need_swap = true;
522 }
523
524 SHAPE_POLY_SET shapebuffer;
525
526 if( IsRound( aOther ) )
527 {
528 TransformCircleToPolygon( shapebuffer, aOtherPos, radius, ARC_LOW_DEF, ERROR_INSIDE, 16 );
529 }
530 else
531 {
532 static_cast<PAD*>( aOther )->TransformShapeToPolygon( shapebuffer, aTrack->GetLayer(), 0,
534 }
535
536 SHAPE_LINE_CHAIN& outline = shapebuffer.Outline(0);
537 outline.SetClosed( true );
538
539 // Search the intersection point between the pad/via shape and the current track
540 // This this the starting point to define the teardrop length
542 int pt_count;
543
544 if( aTrack->Type() == PCB_ARC_T )
545 {
546 // To find the starting point we convert the arc to a polyline
547 // and compute the intersection point with the pad/via shape
548 SHAPE_ARC arc( aTrack->GetStart(), static_cast<PCB_ARC*>( aTrack )->GetMid(),
549 aTrack->GetEnd(), aTrack->GetWidth() );
550
552 pt_count = outline.Intersect( poly, pts );
553 }
554 else
555 {
556 pt_count = outline.Intersect( SEG( start, end ), pts );
557 }
558
559 // Ensure a intersection point was found, otherwise we cannot built the teardrop
560 // using this track (it is fully outside or inside the pad/via shape)
561 if( pt_count < 1 )
562 return false;
563
564 aIntersection = pts[0].p;
565 start = aIntersection; // This is currently the reference point of the teardrop length
566
567 // actualTdLen for now the distance between start and the teardrop point on the (start end)segment
568 // It cannot be bigger than the lenght of this segment
569 actualTdLen = std::min( targetLength, SEG( start, end ).Length() );
570 VECTOR2I ref_lenght_point = start; // the reference point of actualTdLen
571
572 // If the first track is too short to allow a teardrop having the requested length
573 // explore the connected track(s), and try to find a anchor point at targetLength from initial start
574 if( actualTdLen < targetLength && aParams.m_AllowUseTwoTracks )
575 {
576 int consumed = 0;
577
578 while( actualTdLen + consumed < targetLength )
579 {
580 EDA_ITEM_FLAGS matchType;
581
582 PCB_TRACK* connected_track = findTouchingTrack( matchType, aTrack, end );
583
584 if( connected_track == nullptr )
585 break;
586
587 // TODO: stop if angle between old and new segment is > 45 deg to avoid bad shape
588 consumed += actualTdLen;
589 // actualTdLen is the new distance from new start point and the teardrop anchor point
590 actualTdLen = std::min( targetLength-consumed, int( connected_track->GetLength() ) );
591 aTrack = connected_track;
592 end = connected_track->GetEnd();
593 start = connected_track->GetStart();
594 need_swap = false;
595
596 if( matchType != STARTPOINT )
597 {
598 std::swap( start, end );
599 need_swap = true;
600 }
601
602 // If we do not want to explore more than one connected track, stop search here
603 break;
604 }
605 }
606
607 // if aTrack is an arc, find the best teardrop end point on the arc
608 // It is currently on the segment from arc start point to arc end point,
609 // therefore not really on the arc, because we have used only the track end points.
610 if( aTrack->Type() == PCB_ARC_T )
611 {
612 // To find the best start and end points to build the teardrop shape, we convert
613 // the arc to segments, and search for the segment having its start point at a dist
614 // < actualTdLen, and its end point at adist > actualTdLen:
615 SHAPE_ARC arc( aTrack->GetStart(), static_cast<PCB_ARC*>( aTrack )->GetMid(),
616 aTrack->GetEnd(), aTrack->GetWidth() );
617
618 if( need_swap )
619 arc.Reverse();
620
622
623 // Now, find the segment of the arc at a distance < actualTdLen from ref_lenght_point.
624 // We just search for the first segment (starting from the farest segment) with its
625 // start point at a distance < actualTdLen dist
626 // This is basic, but it is probably enough.
627 if( poly.PointCount() > 2 )
628 {
629 // Note: the first point is inside or near the pad/via shape
630 // The last point is outside and the farest from the ref_lenght_point
631 // So we explore segments from the last to the first
632 for( int ii = poly.PointCount()-1; ii >= 0 ; ii-- )
633 {
634 int dist_from_start = ( poly.CPoint( ii ) - start ).EuclideanNorm();
635
636 // The first segment at a distance of the reference point < actualTdLen is OK
637 // and is suitable to define the reference segment of the teardrop anchor.
638 if( dist_from_start < actualTdLen || ii == 0 )
639 {
640 start = poly.CPoint( ii );
641
642 if( ii < poly.PointCount()-1 )
643 end = poly.CPoint( ii+1 );
644
645 // actualTdLen is the distance between start (the reference segment start point)
646 // and the point on track of the teardrop.
647 // This is the difference between the initial actualTdLen value and the
648 // distance between start and ref_lenght_point.
649 actualTdLen -= (start - ref_lenght_point).EuclideanNorm();
650
651 // Ensure validity of actualTdLen: >= 0, and <= segment lenght
652 if( actualTdLen < 0 ) // should not happen, but...
653 actualTdLen = 0;
654
655 actualTdLen = std::min( actualTdLen, (end - start).EuclideanNorm() );
656
657 break;
658 }
659 }
660 }
661 }
662
663 // aStartPoint and aEndPoint will define later a segment to build the 2 anchors points
664 // of the teardrop on the aTrack shape.
665 // they are two points (both outside the pad/via shape) of aTrack if aTrack is a segment,
666 // or a small segment on aTrack if aTrack is an ARC
667 aStartPoint = start;
668 aEndPoint = end;
669
670 *aEffectiveTeardropLen = actualTdLen;
671 return found;
672}
673
674
676 std::vector<VECTOR2I>& aCorners, PCB_TRACK* aTrack,
677 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos ) const
678{
679 VECTOR2I start, end; // Start and end points of the track anchor of the teardrop
680 // the start point is inside the teardrop shape
681 // the end point is outside.
682 VECTOR2I intersection; // Where the track centerline intersects the pad/via edge
683 int track_stub_len; // the dist between the start point and the anchor point
684 // on the track
685
686 // Note: aTrack can be modified if the initial track is too short
687 if( !findAnchorPointsOnTrack( aParams, start, end, intersection, aTrack, aOther, aOtherPos,
688 &track_stub_len ) )
689 {
690 return false;
691 }
692
693 // The start and end points must be different to calculate a valid polygon shape
694 if( start == end )
695 return false;
696
697 VECTOR2D vecT = NormalizeVector(end - start);
698
699 // find the 2 points on the track, sharp end of the teardrop
700 int track_halfwidth = aTrack->GetWidth() / 2;
701 VECTOR2I pointB = start + VECTOR2I( vecT.x * track_stub_len + vecT.y * track_halfwidth,
702 vecT.y * track_stub_len - vecT.x * track_halfwidth );
703 VECTOR2I pointA = start + VECTOR2I( vecT.x * track_stub_len - vecT.y * track_halfwidth,
704 vecT.y * track_stub_len + vecT.x * track_halfwidth );
705
706 // To build a polygonal valid shape pointA and point B must be outside the pad
707 // It can be inside with some pad shapes having very different X and X sizes
708 if( !IsRound( aOther ) )
709 {
710 PAD* pad = static_cast<PAD*>( aOther );
711
712 if( pad->HitTest( pointA ) )
713 return false;
714
715 if( pad->HitTest( pointB ) )
716 return false;
717 }
718
719 // Introduce a last point to cover the via centre to ensure it is seen as connected
720 VECTOR2I pointD = aOtherPos;
721 // add a small offset in order to have the aViaPad.m_Pos reference point inside
722 // the teardrop area, just in case...
723 int offset = pcbIUScale.mmToIU( 0.001 );
724 pointD += VECTOR2I( int( -vecT.x*offset), int(-vecT.y*offset) );
725
726 VECTOR2I pointC, pointE; // Point on pad/via outlines
727 std::vector<VECTOR2I> pts = { pointA, pointB, pointC, pointD, pointE };
728
729 computeAnchorPoints( aParams, aTrack->GetLayer(), aOther, aOtherPos, pts );
730
731 if( !aParams.IsCurved() )
732 {
733 aCorners = pts;
734 return true;
735 }
736
737 // See if we can use curved teardrop shape
738 if( IsRound( aOther ) )
739 {
740 computeCurvedForRoundShape( aParams, aCorners, track_halfwidth, vecT, aOther, aOtherPos, pts );
741 }
742 else
743 {
744 int td_width = KiROUND( GetWidth( aOther ) * aParams.m_BestWidthRatio );
745
746 if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_width )
747 td_width = aParams.m_TdMaxWidth;
748
749 computeCurvedForRectShape( aParams, aCorners, td_width, track_halfwidth, pts, intersection );
750 }
751
752 return true;
753}
constexpr int ARC_HIGH_DEF
Definition: base_units.h:120
constexpr EDA_IU_SCALE pcbIUScale
Definition: base_units.h:108
constexpr int ARC_LOW_DEF
Definition: base_units.h:119
Bezier curves to polygon converter.
Definition: bezier_curves.h:38
void GetPoly(std::vector< VECTOR2I > &aOutput, int aMaxError=10)
Convert a Bezier curve to a polygon.
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Definition: board_item.h:79
virtual PCB_LAYER_ID GetLayer() const
Return the primary layer this item is on.
Definition: board_item.h:240
const ZONES & Zones() const
Definition: board.h:334
const TRACKS & Tracks() const
Definition: board.h:328
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer, int aWorstClearance=0)
Insert an item into the tree on a particular layer with an optional worst clearance.
Definition: drc_rtree.h:104
int QueryColliding(BOARD_ITEM *aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function< bool(BOARD_ITEM *)> aFilter=nullptr, std::function< bool(BOARD_ITEM *)> aVisitor=nullptr, int aClearance=0) const
This is a fast test which essentially does bounding-box overlap given a worst-case clearance.
Definition: drc_rtree.h:213
virtual VECTOR2I GetPosition() const
Definition: eda_item.h:243
KICAD_T Type() const
Returns the type of object.
Definition: eda_item.h:101
virtual bool HitTest(const VECTOR2I &aPosition, int aAccuracy=0) const
Test if aPosition is inside or on the boundary of this item.
Definition: eda_item.h:216
Definition: pad.h:54
const VECTOR2I & GetMid() const
Definition: pcb_track.h:281
virtual double GetLength() const
Get the length of the track using the hypotenuse calculation.
Definition: pcb_track.cpp:636
int GetWidth() const
Definition: pcb_track.h:116
const VECTOR2I & GetStart() const
Definition: pcb_track.h:122
const VECTOR2I & GetEnd() const
Definition: pcb_track.h:119
Definition: seg.h:42
int Length() const
Return the length (this).
Definition: seg.h:336
const SHAPE_LINE_CHAIN ConvertToPolyline(double aAccuracy=DefaultAccuracyForPCB(), double *aEffectiveAccuracy=nullptr) const
Construct a SHAPE_LINE_CHAIN of segments from a given arc.
Definition: shape_arc.cpp:542
void Reverse()
Definition: shape_arc.cpp:657
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
void SetClosed(bool aClosed)
Mark the line chain as closed (i.e.
int Intersect(const SEG &aSeg, INTERSECTIONS &aIp) const
Find all intersection points between our line chain and the segment aSeg.
int PointCount() const
Return the number of points (vertices) in this line chain.
double Area(bool aAbsolute=true) const
Return the area of this chain.
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
std::vector< INTERSECTION > INTERSECTIONS
const std::vector< VECTOR2I > & CPoints() const
Represent a set of closed polygons.
void Rotate(const EDA_ANGLE &aAngle, const VECTOR2I &aCenter={ 0, 0 }) override
Rotate all vertices by a given angle.
void BooleanIntersection(const SHAPE_POLY_SET &b, POLYGON_MODE aFastMode)
Perform boolean polyset intersection For aFastMode meaning, see function booleanOp.
int Append(int x, int y, int aOutline=-1, int aHole=-1, bool aAllowDuplication=false)
Appends a vertex at the end of the given outline/hole (default: the last outline)
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
int NewOutline()
Creates a new empty polygon in the set and returns its index.
void Move(const VECTOR2I &aVector) override
BOARD * m_board
Definition: teardrop.h:239
bool computeAnchorPoints(const TEARDROP_PARAMETERS &aParams, PCB_LAYER_ID aLayer, BOARD_ITEM *aItem, const VECTOR2I &aPos, std::vector< VECTOR2I > &aPts) const
Compute the 2 points on pad/via of the teardrop shape.
bool computeTeardropPolygon(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aCorners, PCB_TRACK *aTrack, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos) const
Compute all teardrop points of the polygon shape.
void computeCurvedForRectShape(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aPoly, int aTdWidth, int aTrackHalfWidth, std::vector< VECTOR2I > &aPts, const VECTOR2I &aIntersection) const
Compute the curve part points for teardrops connected to a rectangular/polygonal shape The Bezier cur...
PCB_TRACK * findTouchingTrack(EDA_ITEM_FLAGS &aMatchType, PCB_TRACK *aTrackRef, const VECTOR2I &aEndPoint) const
Find a track connected to the end of another track.
TRACK_BUFFER m_trackLookupList
Definition: teardrop.h:244
static bool IsRound(BOARD_ITEM *aItem)
bool areItemsInSameZone(BOARD_ITEM *aPadOrVia, PCB_TRACK *aTrack) const
static int GetWidth(BOARD_ITEM *aItem)
DRC_RTREE m_tracksRTree
Definition: teardrop.h:243
bool findAnchorPointsOnTrack(const TEARDROP_PARAMETERS &aParams, VECTOR2I &aStartPoint, VECTOR2I &aEndPoint, VECTOR2I &aIntersection, PCB_TRACK *&aTrack, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos, int *aEffectiveTeardropLen) const
void computeCurvedForRoundShape(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aPoly, int aTrackHalfWidth, const VECTOR2D &aTrackDir, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos, std::vector< VECTOR2I > &aPts) const
Compute the curve part points for teardrops connected to a round shape The Bezier curve control point...
TEARDROP_PARAMETARS is a helper class to handle parameters needed to build teardrops for a board thes...
double m_BestWidthRatio
The height of a teardrop as ratio between height and size of pad/via.
int m_TdMaxLen
max allowed length for teardrops in IU. <= 0 to disable
bool m_AllowUseTwoTracks
True to create teardrops using 2 track segments if the first in too small.
int m_TdMaxWidth
max allowed height for teardrops in IU. <= 0 to disable
double m_BestLengthRatio
The length of a teardrop as ratio between length and size of pad/via.
int idxFromLayNet(int aLayer, int aNetcode) const
Definition: teardrop.h:72
void AddTrack(PCB_TRACK *aTrack, int aLayer, int aNetcode)
Add a track in buffer, in space grouping tracks having the same netcode and the same layer.
std::map< int, std::vector< PCB_TRACK * > * > m_map_tracks
Definition: teardrop.h:78
T EuclideanNorm() const
Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
Definition: vector2d.h:278
VECTOR2< T > Resize(T aNewLength) const
Return a vector of the same direction, but length specified in aNewLength.
Definition: vector2d.h:380
Handle a list of polygons defining a copper zone.
Definition: zone.h:73
void TransformCircleToPolygon(SHAPE_LINE_CHAIN &aBuffer, const VECTOR2I &aCenter, int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount=0)
Convert a circle to a polygon, using multiple straight lines.
void BuildConvexHull(std::vector< VECTOR2I > &aResult, const std::vector< VECTOR2I > &aPoly)
Calculate the convex hull of a list of points in counter-clockwise order.
Definition: convex_hull.cpp:87
std::uint32_t EDA_ITEM_FLAGS
#define STARTPOINT
When a line is selected, these flags indicate which.
@ ERROR_INSIDE
PCB_LAYER_ID
A quick note on layer IDs:
Definition: layer_ids.h:60
CITER next(CITER it)
Definition: ptree.cpp:126
constexpr int mmToIU(double mm) const
Definition: base_units.h:88
static VECTOR2D NormalizeVector(const VECTOR2I &aVector)
@ PCB_VIA_T
class PCB_VIA, a via (like a track segment on a copper layer)
Definition: typeinfo.h:97
@ PCB_PAD_T
class PAD, a pad in a footprint
Definition: typeinfo.h:87
@ PCB_ARC_T
class PCB_ARC, an arc track segment on a copper layer
Definition: typeinfo.h:98
@ PCB_TRACE_T
class PCB_TRACK, a track segment (segment on a copper layer)
Definition: typeinfo.h:96
constexpr ret_type KiROUND(fp_type v)
Round a floating point number to an integer using "round halfway cases away from zero".
Definition: util.h:121
VECTOR2< int32_t > VECTOR2I
Definition: vector2d.h:673