KiCad PCB EDA Suite
Loading...
Searching...
No Matches
teardrop_utils.cpp
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2021 Jean-Pierre Charras, jp.charras at wanadoo.fr
5 * Copyright The KiCad Developers, see AUTHORS.txt for contributors.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, you may find one here:
19 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20 * or you may search the http://www.gnu.org website for the version 2 license,
21 * or you may write to the Free Software Foundation, Inc.,
22 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25/*
26 * Some calculations (mainly computeCurvedForRoundShape) are derived from
27 * https://github.com/NilujePerchut/kicad_scripts/tree/master/teardrops
28 */
29
31#include <pcb_track.h>
32#include <pad.h>
33#include <zone_filler.h>
34#include <board_commit.h>
35#include <drc/drc_rtree.h>
36
37#include "teardrop.h"
41#include <bezier_curves.h>
42
43#include <wx/log.h>
44
45
46void TRACK_BUFFER::AddTrack( PCB_TRACK* aTrack, int aLayer, int aNetcode )
47{
48 auto item = m_map_tracks.find( idxFromLayNet( aLayer, aNetcode ) );
49 std::vector<PCB_TRACK*>* buffer;
50
51 if( item == m_map_tracks.end() )
52 {
53 buffer = new std::vector<PCB_TRACK*>;
54 m_map_tracks[idxFromLayNet( aLayer, aNetcode )] = buffer;
55 }
56 else
57 {
58 buffer = (*item).second;
59 }
60
61 buffer->push_back( aTrack );
62}
63
64
66{
67 if( aItem->Type() == PCB_VIA_T )
68 {
69 PCB_VIA* via = static_cast<PCB_VIA*>( aItem );
70 return via->GetWidth( aLayer );
71 }
72 else if( aItem->Type() == PCB_PAD_T )
73 {
74 PAD* pad = static_cast<PAD*>( aItem );
75 return std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
76 }
77 else if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_ARC_T )
78 {
79 PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
80 return track->GetWidth();
81 }
82
83 return 0;
84}
85
86
88{
89 if( aItem->Type() == PCB_PAD_T )
90 {
91 PAD* pad = static_cast<PAD*>( aItem );
92
93 return pad->GetShape( aLayer ) == PAD_SHAPE::CIRCLE
94 || ( pad->GetShape( aLayer ) == PAD_SHAPE::OVAL
95 && pad->GetSize( aLayer ).x == pad->GetSize( aLayer ).y );
96 }
97
98 return true;
99}
100
101
103{
104 for( PCB_TRACK* track : m_board->Tracks() )
105 {
106 if( track->Type() == PCB_TRACE_T || track->Type() == PCB_ARC_T )
107 {
108 m_tracksRTree.Insert( track, track->GetLayer() );
109 m_trackLookupList.AddTrack( track, track->GetLayer(), track->GetNetCode() );
110 }
111 }
112}
113
114
116{
117 for( ZONE* zone: m_board->Zones() )
118 {
119 // Skip teardrops
120 if( zone->IsTeardropArea() )
121 continue;
122
123 // Only consider zones on the same layer
124 if( !zone->IsOnLayer( aTrack->GetLayer() ) )
125 continue;
126
127 if( zone->GetNetCode() == aTrack->GetNetCode() )
128 {
129 if( zone->Outline()->Contains( VECTOR2I( aPadOrVia->GetPosition() ) ) )
130 {
131 // If the first item is a pad, ensure it can be connected to the zone
132 if( aPadOrVia->Type() == PCB_PAD_T )
133 {
134 PAD *pad = static_cast<PAD*>( aPadOrVia );
135
136 if( zone->GetPadConnection() == ZONE_CONNECTION::NONE
137 || pad->GetZoneConnectionOverrides( nullptr ) == ZONE_CONNECTION::NONE )
138 {
139 return false;
140 }
141 }
142
143 return true;
144 }
145 }
146 }
147
148 return false;
149}
150
151
153 const VECTOR2I& aEndPoint ) const
154{
155 int matches = 0; // Count of candidates: only 1 is acceptable
156 PCB_TRACK* candidate = nullptr; // a reference to the track connected
157
158 m_tracksRTree.QueryColliding( aTrackRef, aTrackRef->GetLayer(), aTrackRef->GetLayer(),
159 // Filter:
160 [&]( BOARD_ITEM* trackItem ) -> bool
161 {
162 return trackItem != aTrackRef;
163 },
164 // Visitor
165 [&]( BOARD_ITEM* trackItem ) -> bool
166 {
167 PCB_TRACK* curr_track = static_cast<PCB_TRACK*>( trackItem );
168
169 // IsPointOnEnds() returns 0, EDA_ITEM_FLAGS::STARTPOINT or EDA_ITEM_FLAGS::ENDPOINT
170 if( EDA_ITEM_FLAGS match = curr_track->IsPointOnEnds( aEndPoint, m_tolerance ) )
171 {
172 // if faced with a Y junction, choose the track longest segment as candidate
173 matches++;
174
175 if( matches > 1 )
176 {
177 double previous_len = candidate->GetLength();
178 double curr_len = curr_track->GetLength();
179
180 if( previous_len >= curr_len )
181 return true;
182 }
183
184 aMatchType = match;
185 candidate = curr_track;
186 }
187
188 return true;
189 },
190 0 );
191
192 return candidate;
193}
194
195
199static VECTOR2D NormalizeVector( const VECTOR2I& aVector )
200{
201 VECTOR2D vect( aVector );
202 double norm = vect.EuclideanNorm();
203 return vect / norm;
204}
205
206
207/*
208 * Compute the curve part points for teardrops connected to a round shape
209 * The Bezier curve control points are optimized for a round pad/via shape,
210 * and do not give a good curve shape for other pad shapes
211 */
213 std::vector<VECTOR2I>& aPoly,
214 PCB_LAYER_ID aLayer,
215 int aTrackHalfWidth, const VECTOR2D& aTrackDir,
216 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos,
217 std::vector<VECTOR2I>& pts ) const
218{
219 // in pts:
220 // A and B are points on the track ( pts[0] and pts[1] )
221 // C and E are points on the aViaPad ( pts[2] and pts[4] )
222 // D is the aViaPad centre ( pts[3] )
223 double Vpercent = aParams.m_BestWidthRatio;
224 int td_height = KiROUND( GetWidth( aOther, aLayer ) * Vpercent );
225
226 // First, calculate a aVpercent equivalent to the td_height clamped by aTdMaxHeight
227 // We cannot use the initial aVpercent because it gives bad shape with points
228 // on aViaPad calculated for a clamped aViaPad size
229 if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_height )
230 Vpercent *= (double) aParams.m_TdMaxWidth / td_height;
231
232 int radius = GetWidth( aOther, aLayer ) / 2;
233
234 // Don't divide by zero. No good can come of that.
235 wxCHECK2( radius != 0, radius = 1 );
236
237 double minVpercent = double( aTrackHalfWidth ) / radius;
238 double weaken = (Vpercent - minVpercent) / ( 1 - minVpercent ) / radius;
239
240 double biasBC = 0.5 * SEG( pts[1], pts[2] ).Length();
241 double biasAE = 0.5 * SEG( pts[4], pts[0] ).Length();
242
243 VECTOR2I vecC = (VECTOR2I)pts[2] - aOtherPos;
244 VECTOR2I tangentC = VECTOR2I( pts[2].x - vecC.y * biasBC * weaken,
245 pts[2].y + vecC.x * biasBC * weaken );
246 VECTOR2I vecE = (VECTOR2I)pts[4] - aOtherPos;
247 VECTOR2I tangentE = VECTOR2I( pts[4].x + vecE.y * biasAE * weaken,
248 pts[4].y - vecE.x * biasAE * weaken );
249
250 VECTOR2I tangentB = VECTOR2I( pts[1].x - aTrackDir.x * biasBC,
251 pts[1].y - aTrackDir.y * biasBC );
252 VECTOR2I tangentA = VECTOR2I( pts[0].x - aTrackDir.x * biasAE,
253 pts[0].y - aTrackDir.y * biasAE );
254
255 std::vector<VECTOR2I> curve_pts;
256 BEZIER_POLY( pts[1], tangentB, tangentC, pts[2] ).GetPoly( curve_pts, ARC_HIGH_DEF );
257
258 for( VECTOR2I& corner: curve_pts )
259 aPoly.push_back( corner );
260
261 aPoly.push_back( pts[3] );
262
263 curve_pts.clear();
264 BEZIER_POLY( pts[4], tangentE, tangentA, pts[0] ).GetPoly( curve_pts, ARC_HIGH_DEF );
265
266 for( VECTOR2I& corner: curve_pts )
267 aPoly.push_back( corner );
268}
269
270
271/*
272 * Compute the curve part points for teardrops connected to a rectangular/polygonal shape
273 * The Bezier curve control points are not optimized for a special shape
274 */
276 std::vector<VECTOR2I>& aPoly, int aTdWidth,
277 int aTrackHalfWidth,
278 std::vector<VECTOR2I>& aPts,
279 const VECTOR2I& aIntersection) const
280{
281 // in aPts:
282 // A and B are points on the track ( pts[0] and pts[1] )
283 // C and E are points on the pad/via ( pts[2] and pts[4] )
284 // D is the aViaPad centre ( pts[3] )
285
286 // side1 is( aPts[1], aPts[2] ); from track to via
287 VECTOR2I side1( aPts[2] - aPts[1] ); // vector from track to via
288 // side2 is ( aPts[4], aPts[0] ); from via to track
289 VECTOR2I side2( aPts[4] - aPts[0] ); // vector from track to via
290
291 VECTOR2I trackDir( aIntersection - ( aPts[0] + aPts[1] ) / 2 );
292
293 std::vector<VECTOR2I> curve_pts;
294
295 // Note: This side is from track to pad/via
296 VECTOR2I ctrl1 = aPts[1] + trackDir.Resize( side1.EuclideanNorm() / 4 );
297 VECTOR2I ctrl2 = ( aPts[2] + aIntersection ) / 2;
298
299 BEZIER_POLY( aPts[1], ctrl1, ctrl2, aPts[2] ).GetPoly( curve_pts, ARC_HIGH_DEF );
300
301 for( VECTOR2I& corner: curve_pts )
302 aPoly.push_back( corner );
303
304 aPoly.push_back( aPts[3] );
305
306 // Note: This side is from pad/via to track
307 curve_pts.clear();
308
309 ctrl1 = ( aPts[4] + aIntersection ) / 2;
310 ctrl2 = aPts[0] + trackDir.Resize( side2.EuclideanNorm() / 4 );
311
312 BEZIER_POLY( aPts[4], ctrl1, ctrl2, aPts[0] ).GetPoly( curve_pts, ARC_HIGH_DEF );
313
314 for( VECTOR2I& corner: curve_pts )
315 aPoly.push_back( corner );
316}
317
318
320 BOARD_ITEM* aItem, const VECTOR2I& aPos,
321 std::vector<VECTOR2I>& aPts ) const
322{
323 // Compute the 2 anchor points on pad/via/track of the teardrop shape
324
325 SHAPE_POLY_SET c_buffer;
326
327 // m_BestWidthRatio is the factor to calculate the teardrop preferred width.
328 // teardrop width = pad, via or track size * m_BestWidthRatio (m_BestWidthRatio <= 1.0)
329 // For rectangular (and similar) shapes, the preferred_width is calculated from the min
330 // dim of the rectangle
331
332 int preferred_width = KiROUND( GetWidth( aItem, aLayer ) * aParams.m_BestWidthRatio );
333
334 // force_clip = true to force the pad/via/track polygon to be clipped to follow
335 // constraints
336 // Clipping is also needed for rectangular shapes, because the teardrop shape is restricted
337 // to a polygonal area smaller than the pad area (the teardrop height use the smaller value
338 // of X and Y sizes).
339 bool force_clip = aParams.m_BestWidthRatio < 1.0;
340
341 // To find the anchor points on the pad/via/track shape, we build the polygonal shape, and
342 // clip the polygon to the max size (preferred_width or m_TdMaxWidth) by a rectangle
343 // centered on the axis of the expected teardrop shape.
344 // (only reduce the size of polygonal shape does not give good anchor points)
345 if( IsRound( aItem, aLayer ) )
346 {
347 TransformCircleToPolygon( c_buffer, aPos, GetWidth( aItem, aLayer ) / 2, ARC_LOW_DEF,
348 ERROR_INSIDE, 16 );
349 }
350 else // Only PADS can have a not round shape
351 {
352 wxCHECK_MSG( aItem->Type() == PCB_PAD_T, false, wxT( "Expected non-round item to be PAD" ) );
353 PAD* pad = static_cast<PAD*>( aItem );
354
355 force_clip = true;
356
357 preferred_width = KiROUND( GetWidth( pad, aLayer ) * aParams.m_BestWidthRatio );
358
359 const double SIN_60 = EDA_ANGLE( 60.0, DEGREES_T ).Sin();
360
361 // When the teardrop edges are curved we attempt to avoid undercutting rounded corners
362 // on the pads. While chamfered corners also have this issue, they aren't necessarily
363 // uniform and it's probably better if we let the user adjust the max teardrop width
364 // accordingly.
365 if( aParams.m_CurvedEdges && pad->GetShape( aLayer ) == PAD_SHAPE::ROUNDRECT )
366 {
367 int adjustedWidth = GetWidth( pad, aLayer );
368 adjustedWidth -= KiROUND( pad->GetRoundRectCornerRadius( aLayer ) * ( SIN_60 ) * 2 );
369
370 preferred_width = std::min( preferred_width, adjustedWidth );
371 }
372
373 pad->TransformShapeToPolygon( c_buffer, aLayer, 0, ARC_LOW_DEF, ERROR_INSIDE );
374 }
375
376 // Clip the pad/via/track shape to match the m_TdMaxWidth constraint, and for non-round pads,
377 // clip the shape to the smallest of size.x and size.y values.
378 if( force_clip || ( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < preferred_width ) )
379 {
380 int halfsize = std::min( aParams.m_TdMaxWidth, preferred_width ) / 2;
381
382 // teardrop_axis is the line from anchor point on the track and the end point
383 // of the teardrop in the pad/via
384 // this is the teardrop_axis of the teardrop shape to build
385 VECTOR2I ref_on_track = ( aPts[0] + aPts[1] ) / 2;
386 VECTOR2I teardrop_axis( aPts[3] - ref_on_track );
387
388 EDA_ANGLE orient( teardrop_axis );
389 int len = teardrop_axis.EuclideanNorm();
390
391 // Build the constraint polygon: a rectangle with
392 // length = dist between the point on track and the pad/via pos
393 // height = m_TdMaxWidth or aViaPad.m_Width
394 SHAPE_POLY_SET clipping_rect;
395 clipping_rect.NewOutline();
396
397 // Build a horizontal rect: it will be rotated later
398 clipping_rect.Append( 0, - halfsize );
399 clipping_rect.Append( 0, halfsize );
400 clipping_rect.Append( len, halfsize );
401 clipping_rect.Append( len, - halfsize );
402
403 clipping_rect.Rotate( -orient );
404 clipping_rect.Move( ref_on_track );
405
406 // Clip the shape to the max allowed teadrop area
407 c_buffer.BooleanIntersection( clipping_rect );
408 }
409
410 /* in aPts:
411 * A and B are points on the track ( aPts[0] and aPts[1] )
412 * C and E are points on the aViaPad ( aPts[2] and aPts[4] )
413 * D is midpoint behind the aViaPad centre ( aPts[3] )
414 */
415
416 SHAPE_LINE_CHAIN& padpoly = c_buffer.Outline(0);
417 std::vector<VECTOR2I> points = padpoly.CPoints();
418
419 std::vector<VECTOR2I> initialPoints;
420 initialPoints.push_back( aPts[0] );
421 initialPoints.push_back( aPts[1] );
422
423 for( const VECTOR2I& pt: points )
424 initialPoints.emplace_back( pt.x, pt.y );
425
426 std::vector<VECTOR2I> hull;
427 BuildConvexHull( hull, initialPoints );
428
429 // Search for end points of segments starting at aPts[0] or aPts[1]
430 // In some cases, in convex hull, only one point (aPts[0] or aPts[1]) is still in list
431 VECTOR2I PointC;
432 VECTOR2I PointE;
433 int found_start = -1; // 2 points (one start and one end) should be found
434 int found_end = -1;
435
436 VECTOR2I start = aPts[0];
437 VECTOR2I pend = aPts[1];
438
439 for( unsigned ii = 0, jj = 0; jj < hull.size(); ii++, jj++ )
440 {
441 unsigned next = ii+ 1;
442
443 if( next >= hull.size() )
444 next = 0;
445
446 int prev = ii -1;
447
448 if( prev < 0 )
449 prev = hull.size()-1;
450
451 if( hull[ii] == start )
452 {
453 // the previous or the next point is candidate:
454 if( hull[next] != pend )
455 PointE = hull[next];
456 else
457 PointE = hull[prev];
458
459 found_start = ii;
460 }
461
462 if( hull[ii] == pend )
463 {
464 if( hull[next] != start )
465 PointC = hull[next];
466 else
467 PointC = hull[prev];
468
469 found_end = ii;
470 }
471 }
472
473 if( found_start < 0 ) // PointE was not initialized, because start point does not exit
474 {
475 int ii = found_end-1;
476
477 if( ii < 0 )
478 ii = hull.size()-1;
479
480 PointE = hull[ii];
481 }
482
483 if( found_end < 0 ) // PointC was not initialized, because end point does not exit
484 {
485 int ii = found_start-1;
486
487 if( ii < 0 )
488 ii = hull.size()-1;
489
490 PointC = hull[ii];
491 }
492
493 aPts[2] = PointC;
494 aPts[4] = PointE;
495
496 // Now we have to know if the choice aPts[2] = PointC is the best, or if
497 // aPts[2] = PointE is better.
498 // A criteria is to calculate the polygon area in these 2 cases, and choose the case
499 // that gives the bigger area, because the segments starting at PointC and PointE
500 // maximize their distance.
501 SHAPE_LINE_CHAIN dummy1( aPts, true );
502 double area1 = dummy1.Area();
503
504 std::swap( aPts[2], aPts[4] );
505 SHAPE_LINE_CHAIN dummy2( aPts, true );
506 double area2 = dummy2.Area();
507
508 if( area1 > area2 ) // The first choice (without swapping) is the better.
509 std::swap( aPts[2], aPts[4] );
510
511 return true;
512}
513
514
516 VECTOR2I& aStartPoint, VECTOR2I& aEndPoint,
517 VECTOR2I& aIntersection, PCB_TRACK*& aTrack,
518 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos,
519 int* aEffectiveTeardropLen ) const
520{
521 bool found = true;
522 VECTOR2I start = aTrack->GetStart(); // one reference point on the track, inside teardrop
523 VECTOR2I end = aTrack->GetEnd(); // the second reference point on the track, outside teardrop
524 PCB_LAYER_ID layer = aTrack->GetLayer();
525 int radius = GetWidth( aOther, layer ) / 2;
526
527 // Requested length of the teardrop:
528 int targetLength = KiROUND( GetWidth( aOther, layer ) * aParams.m_BestLengthRatio );
529
530 if( aParams.m_TdMaxLen > 0 )
531 targetLength = std::min( aParams.m_TdMaxLen, targetLength );
532
533 // actualTdLen is the distance between start and the teardrop point on the segment from start to end
534 int actualTdLen;
535 bool need_swap = false; // true if the start and end points of the current track are swapped
536
537 // aTrack is expected to have one end inside the via/pad and the other end outside
538 // so ensure the start point is inside the via/pad
539 if( !aOther->HitTest( start, 0 ) )
540 {
541 std::swap( start, end );
542 need_swap = true;
543 }
544
545 SHAPE_POLY_SET shapebuffer;
546
547 if( IsRound( aOther, layer ) )
548 {
549 TransformCircleToPolygon( shapebuffer, aOtherPos, radius, ARC_LOW_DEF, ERROR_INSIDE, 16 );
550 }
551 else
552 {
553 wxCHECK_MSG( aOther->Type() == PCB_PAD_T, false, wxT( "Expected non-round item to be PAD" ) );
554 static_cast<PAD*>( aOther )->TransformShapeToPolygon( shapebuffer, aTrack->GetLayer(), 0,
556 }
557
558 SHAPE_LINE_CHAIN& outline = shapebuffer.Outline(0);
559 outline.SetClosed( true );
560
561 // Search the intersection point between the pad/via shape and the current track
562 // This this the starting point to define the teardrop length
564 int pt_count;
565
566 if( aTrack->Type() == PCB_ARC_T )
567 {
568 // To find the starting point we convert the arc to a polyline
569 // and compute the intersection point with the pad/via shape
570 SHAPE_ARC arc( aTrack->GetStart(), static_cast<PCB_ARC*>( aTrack )->GetMid(),
571 aTrack->GetEnd(), aTrack->GetWidth() );
572
574 pt_count = outline.Intersect( poly, pts );
575 }
576 else
577 {
578 pt_count = outline.Intersect( SEG( start, end ), pts );
579 }
580
581 // Ensure a intersection point was found, otherwise we cannot built the teardrop
582 // using this track (it is fully outside or inside the pad/via shape)
583 if( pt_count < 1 )
584 return false;
585
586 aIntersection = pts[0].p;
587 start = aIntersection; // This is currently the reference point of the teardrop length
588
589 // actualTdLen for now the distance between start and the teardrop point on the (start end)segment
590 // It cannot be bigger than the lenght of this segment
591 actualTdLen = std::min( targetLength, SEG( start, end ).Length() );
592 VECTOR2I ref_lenght_point = start; // the reference point of actualTdLen
593
594 // If the first track is too short to allow a teardrop having the requested length
595 // explore the connected track(s), and try to find a anchor point at targetLength from initial start
596 if( actualTdLen < targetLength && aParams.m_AllowUseTwoTracks )
597 {
598 int consumed = 0;
599
600 while( actualTdLen + consumed < targetLength )
601 {
602 EDA_ITEM_FLAGS matchType;
603
604 PCB_TRACK* connected_track = findTouchingTrack( matchType, aTrack, end );
605
606 if( connected_track == nullptr )
607 break;
608
609 // TODO: stop if angle between old and new segment is > 45 deg to avoid bad shape
610 consumed += actualTdLen;
611 // actualTdLen is the new distance from new start point and the teardrop anchor point
612 actualTdLen = std::min( targetLength-consumed, int( connected_track->GetLength() ) );
613 aTrack = connected_track;
614 end = connected_track->GetEnd();
615 start = connected_track->GetStart();
616 need_swap = false;
617
618 if( matchType != STARTPOINT )
619 {
620 std::swap( start, end );
621 need_swap = true;
622 }
623
624 // If we do not want to explore more than one connected track, stop search here
625 break;
626 }
627 }
628
629 // if aTrack is an arc, find the best teardrop end point on the arc
630 // It is currently on the segment from arc start point to arc end point,
631 // therefore not really on the arc, because we have used only the track end points.
632 if( aTrack->Type() == PCB_ARC_T )
633 {
634 // To find the best start and end points to build the teardrop shape, we convert
635 // the arc to segments, and search for the segment having its start point at a dist
636 // < actualTdLen, and its end point at adist > actualTdLen:
637 SHAPE_ARC arc( aTrack->GetStart(), static_cast<PCB_ARC*>( aTrack )->GetMid(),
638 aTrack->GetEnd(), aTrack->GetWidth() );
639
640 if( need_swap )
641 arc.Reverse();
642
644
645 // Now, find the segment of the arc at a distance < actualTdLen from ref_lenght_point.
646 // We just search for the first segment (starting from the farest segment) with its
647 // start point at a distance < actualTdLen dist
648 // This is basic, but it is probably enough.
649 if( poly.PointCount() > 2 )
650 {
651 // Note: the first point is inside or near the pad/via shape
652 // The last point is outside and the farest from the ref_lenght_point
653 // So we explore segments from the last to the first
654 for( int ii = poly.PointCount()-1; ii >= 0 ; ii-- )
655 {
656 int dist_from_start = ( poly.CPoint( ii ) - start ).EuclideanNorm();
657
658 // The first segment at a distance of the reference point < actualTdLen is OK
659 // and is suitable to define the reference segment of the teardrop anchor.
660 if( dist_from_start < actualTdLen || ii == 0 )
661 {
662 start = poly.CPoint( ii );
663
664 if( ii < poly.PointCount()-1 )
665 end = poly.CPoint( ii+1 );
666
667 // actualTdLen is the distance between start (the reference segment start point)
668 // and the point on track of the teardrop.
669 // This is the difference between the initial actualTdLen value and the
670 // distance between start and ref_lenght_point.
671 actualTdLen -= (start - ref_lenght_point).EuclideanNorm();
672
673 // Ensure validity of actualTdLen: >= 0, and <= segment lenght
674 if( actualTdLen < 0 ) // should not happen, but...
675 actualTdLen = 0;
676
677 actualTdLen = std::min( actualTdLen, (end - start).EuclideanNorm() );
678
679 break;
680 }
681 }
682 }
683 }
684
685 // aStartPoint and aEndPoint will define later a segment to build the 2 anchors points
686 // of the teardrop on the aTrack shape.
687 // they are two points (both outside the pad/via shape) of aTrack if aTrack is a segment,
688 // or a small segment on aTrack if aTrack is an ARC
689 aStartPoint = start;
690 aEndPoint = end;
691
692 *aEffectiveTeardropLen = actualTdLen;
693 return found;
694}
695
696
698 std::vector<VECTOR2I>& aCorners, PCB_TRACK* aTrack,
699 BOARD_ITEM* aOther, const VECTOR2I& aOtherPos ) const
700{
701 VECTOR2I start, end; // Start and end points of the track anchor of the teardrop
702 // the start point is inside the teardrop shape
703 // the end point is outside.
704 VECTOR2I intersection; // Where the track centerline intersects the pad/via edge
705 int track_stub_len; // the dist between the start point and the anchor point
706 // on the track
707
708 // Note: aTrack can be modified if the initial track is too short
709 if( !findAnchorPointsOnTrack( aParams, start, end, intersection, aTrack, aOther, aOtherPos,
710 &track_stub_len ) )
711 {
712 return false;
713 }
714
715 // The start and end points must be different to calculate a valid polygon shape
716 if( start == end )
717 return false;
718
719 VECTOR2D vecT = NormalizeVector(end - start);
720
721 // find the 2 points on the track, sharp end of the teardrop
722 int track_halfwidth = aTrack->GetWidth() / 2;
723 VECTOR2I pointB = start + VECTOR2I( vecT.x * track_stub_len + vecT.y * track_halfwidth,
724 vecT.y * track_stub_len - vecT.x * track_halfwidth );
725 VECTOR2I pointA = start + VECTOR2I( vecT.x * track_stub_len - vecT.y * track_halfwidth,
726 vecT.y * track_stub_len + vecT.x * track_halfwidth );
727
728 PCB_LAYER_ID layer = aTrack->GetLayer();
729
730 // To build a polygonal valid shape pointA and point B must be outside the pad
731 // It can be inside with some pad shapes having very different X and Y sizes
732 if( !IsRound( aOther, layer ) )
733 {
734 PAD* pad = static_cast<PAD*>( aOther );
735
736 if( pad->HitTest( pointA ) )
737 return false;
738
739 if( pad->HitTest( pointB ) )
740 return false;
741 }
742
743 // Introduce a last point to cover the via centre to ensure it is seen as connected
744 VECTOR2I pointD = aOtherPos;
745 // add a small offset in order to have the aViaPad.m_Pos reference point inside
746 // the teardrop area, just in case...
747 int offset = pcbIUScale.mmToIU( 0.001 );
748 pointD += VECTOR2I( int( -vecT.x*offset), int(-vecT.y*offset) );
749
750 VECTOR2I pointC, pointE; // Point on pad/via outlines
751 std::vector<VECTOR2I> pts = { pointA, pointB, pointC, pointD, pointE };
752
753 computeAnchorPoints( aParams, aTrack->GetLayer(), aOther, aOtherPos, pts );
754
755 if( !aParams.m_CurvedEdges )
756 {
757 aCorners = pts;
758 return true;
759 }
760
761 // See if we can use curved teardrop shape
762 if( IsRound( aOther, layer ) )
763 {
764 computeCurvedForRoundShape( aParams, aCorners, layer, track_halfwidth, vecT, aOther,
765 aOtherPos, pts );
766 }
767 else
768 {
769 int td_width = KiROUND( GetWidth( aOther, layer ) * aParams.m_BestWidthRatio );
770
771 if( aParams.m_TdMaxWidth > 0 && aParams.m_TdMaxWidth < td_width )
772 td_width = aParams.m_TdMaxWidth;
773
774 computeCurvedForRectShape( aParams, aCorners, td_width, track_halfwidth, pts,
775 intersection );
776 }
777
778 return true;
779}
@ ERROR_INSIDE
Definition: approximation.h:34
constexpr int ARC_HIGH_DEF
Definition: base_units.h:120
constexpr EDA_IU_SCALE pcbIUScale
Definition: base_units.h:108
constexpr int ARC_LOW_DEF
Definition: base_units.h:119
constexpr BOX2I KiROUND(const BOX2D &aBoxD)
Definition: box2.h:990
Bezier curves to polygon converter.
Definition: bezier_curves.h:38
void GetPoly(std::vector< VECTOR2I > &aOutput, int aMaxError=10)
Convert a Bezier curve to a polygon.
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Definition: board_item.h:79
virtual PCB_LAYER_ID GetLayer() const
Return the primary layer this item is on.
Definition: board_item.h:239
const ZONES & Zones() const
Definition: board.h:340
const TRACKS & Tracks() const
Definition: board.h:334
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer, int aWorstClearance=0)
Insert an item into the tree on a particular layer with an optional worst clearance.
Definition: drc_rtree.h:104
int QueryColliding(BOARD_ITEM *aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function< bool(BOARD_ITEM *)> aFilter=nullptr, std::function< bool(BOARD_ITEM *)> aVisitor=nullptr, int aClearance=0) const
This is a fast test which essentially does bounding-box overlap given a worst-case clearance.
Definition: drc_rtree.h:217
double Sin() const
Definition: eda_angle.h:170
virtual VECTOR2I GetPosition() const
Definition: eda_item.h:244
KICAD_T Type() const
Returns the type of object.
Definition: eda_item.h:101
virtual bool HitTest(const VECTOR2I &aPosition, int aAccuracy=0) const
Test if aPosition is inside or on the boundary of this item.
Definition: eda_item.h:217
Definition: pad.h:54
const VECTOR2I & GetMid() const
Definition: pcb_track.h:305
virtual double GetLength() const
Get the length of the track using the hypotenuse calculation.
Definition: pcb_track.cpp:730
const VECTOR2I & GetStart() const
Definition: pcb_track.h:122
const VECTOR2I & GetEnd() const
Definition: pcb_track.h:119
virtual int GetWidth() const
Definition: pcb_track.h:116
Definition: seg.h:42
int Length() const
Return the length (this).
Definition: seg.h:333
const SHAPE_LINE_CHAIN ConvertToPolyline(double aAccuracy=DefaultAccuracyForPCB(), double *aEffectiveAccuracy=nullptr) const
Construct a SHAPE_LINE_CHAIN of segments from a given arc.
Definition: shape_arc.cpp:886
void Reverse()
Definition: shape_arc.cpp:1000
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
void SetClosed(bool aClosed)
Mark the line chain as closed (i.e.
int Intersect(const SEG &aSeg, INTERSECTIONS &aIp) const
Find all intersection points between our line chain and the segment aSeg.
int PointCount() const
Return the number of points (vertices) in this line chain.
double Area(bool aAbsolute=true) const
Return the area of this chain.
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
std::vector< INTERSECTION > INTERSECTIONS
const std::vector< VECTOR2I > & CPoints() const
Represent a set of closed polygons.
void Rotate(const EDA_ANGLE &aAngle, const VECTOR2I &aCenter={ 0, 0 }) override
Rotate all vertices by a given angle.
int Append(int x, int y, int aOutline=-1, int aHole=-1, bool aAllowDuplication=false)
Appends a vertex at the end of the given outline/hole (default: the last outline)
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
int NewOutline()
Creates a new empty polygon in the set and returns its index.
void BooleanIntersection(const SHAPE_POLY_SET &b)
Perform boolean polyset intersection.
void Move(const VECTOR2I &aVector) override
BOARD * m_board
Definition: teardrop.h:240
static bool IsRound(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer)
bool computeAnchorPoints(const TEARDROP_PARAMETERS &aParams, PCB_LAYER_ID aLayer, BOARD_ITEM *aItem, const VECTOR2I &aPos, std::vector< VECTOR2I > &aPts) const
Compute the 2 points on pad/via of the teardrop shape.
static int GetWidth(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer)
bool computeTeardropPolygon(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aCorners, PCB_TRACK *aTrack, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos) const
Compute all teardrop points of the polygon shape.
void computeCurvedForRectShape(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aPoly, int aTdWidth, int aTrackHalfWidth, std::vector< VECTOR2I > &aPts, const VECTOR2I &aIntersection) const
Compute the curve part points for teardrops connected to a rectangular/polygonal shape The Bezier cur...
void computeCurvedForRoundShape(const TEARDROP_PARAMETERS &aParams, std::vector< VECTOR2I > &aPoly, PCB_LAYER_ID aLayer, int aTrackHalfWidth, const VECTOR2D &aTrackDir, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos, std::vector< VECTOR2I > &aPts) const
Compute the curve part points for teardrops connected to a round shape The Bezier curve control point...
PCB_TRACK * findTouchingTrack(EDA_ITEM_FLAGS &aMatchType, PCB_TRACK *aTrackRef, const VECTOR2I &aEndPoint) const
Find a track connected to the end of another track.
TRACK_BUFFER m_trackLookupList
Definition: teardrop.h:245
bool areItemsInSameZone(BOARD_ITEM *aPadOrVia, PCB_TRACK *aTrack) const
DRC_RTREE m_tracksRTree
Definition: teardrop.h:244
bool findAnchorPointsOnTrack(const TEARDROP_PARAMETERS &aParams, VECTOR2I &aStartPoint, VECTOR2I &aEndPoint, VECTOR2I &aIntersection, PCB_TRACK *&aTrack, BOARD_ITEM *aOther, const VECTOR2I &aOtherPos, int *aEffectiveTeardropLen) const
TEARDROP_PARAMETARS is a helper class to handle parameters needed to build teardrops for a board thes...
double m_BestWidthRatio
The height of a teardrop as ratio between height and size of pad/via.
int m_TdMaxLen
max allowed length for teardrops in IU. <= 0 to disable
bool m_AllowUseTwoTracks
True to create teardrops using 2 track segments if the first in too small.
int m_TdMaxWidth
max allowed height for teardrops in IU. <= 0 to disable
double m_BestLengthRatio
The length of a teardrop as ratio between length and size of pad/via.
bool m_CurvedEdges
True if the teardrop should be curved.
int idxFromLayNet(int aLayer, int aNetcode) const
Definition: teardrop.h:72
void AddTrack(PCB_TRACK *aTrack, int aLayer, int aNetcode)
Add a track in buffer, in space grouping tracks having the same netcode and the same layer.
std::map< int, std::vector< PCB_TRACK * > * > m_map_tracks
Definition: teardrop.h:78
T EuclideanNorm() const
Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
Definition: vector2d.h:283
VECTOR2< T > Resize(T aNewLength) const
Return a vector of the same direction, but length specified in aNewLength.
Definition: vector2d.h:385
Handle a list of polygons defining a copper zone.
Definition: zone.h:73
void TransformCircleToPolygon(SHAPE_LINE_CHAIN &aBuffer, const VECTOR2I &aCenter, int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount=0)
Convert a circle to a polygon, using multiple straight lines.
void BuildConvexHull(std::vector< VECTOR2I > &aResult, const std::vector< VECTOR2I > &aPoly)
Calculate the convex hull of a list of points in counter-clockwise order.
Definition: convex_hull.cpp:87
@ DEGREES_T
Definition: eda_angle.h:31
std::uint32_t EDA_ITEM_FLAGS
#define STARTPOINT
When a line is selected, these flags indicate which.
PCB_LAYER_ID
A quick note on layer IDs:
Definition: layer_ids.h:60
CITER next(CITER it)
Definition: ptree.cpp:124
constexpr int mmToIU(double mm) const
Definition: base_units.h:88
static VECTOR2D NormalizeVector(const VECTOR2I &aVector)
int radius
VECTOR2I end
@ PCB_VIA_T
class PCB_VIA, a via (like a track segment on a copper layer)
Definition: typeinfo.h:97
@ PCB_PAD_T
class PAD, a pad in a footprint
Definition: typeinfo.h:87
@ PCB_ARC_T
class PCB_ARC, an arc track segment on a copper layer
Definition: typeinfo.h:98
@ PCB_TRACE_T
class PCB_TRACK, a track segment (segment on a copper layer)
Definition: typeinfo.h:96
VECTOR2< int32_t > VECTOR2I
Definition: vector2d.h:695