KiCad PCB EDA Suite
Loading...
Searching...
No Matches
drc_rtree.h
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors.
5 * Copyright (C) 2020 CERN
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 3
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, you may find one here:
19 * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
20 * or you may search the http://www.gnu.org website for the version 3 license,
21 * or you may write to the Free Software Foundation, Inc.,
22 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25#ifndef DRC_RTREE_H_
26#define DRC_RTREE_H_
27
28#include <board_item.h>
29#include <pad.h>
30#include <pcb_text.h>
31#include <memory>
32#include <unordered_set>
33#include <set>
34#include <vector>
35
36#include <geometry/rtree.h>
37#include <geometry/shape.h>
39#include <math/vector2d.h>
40#include "geometry/shape_null.h"
41#include "board.h"
42
48{
49
50public:
51
53 {
54 ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const SHAPE* aShape,
55 std::shared_ptr<SHAPE> aParentShape = nullptr ) :
56 parent( aParent ),
57 shape( aShape ),
58 shapeStorage( nullptr ),
59 parentShape( std::move( aParentShape ) )
60 {};
61
62 ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const std::shared_ptr<SHAPE>& aShape,
63 std::shared_ptr<SHAPE> aParentShape = nullptr ) :
64 parent( aParent ),
65 shape( aShape.get() ),
66 shapeStorage( aShape ),
67 parentShape( std::move( aParentShape ) )
68 {};
69
71 const SHAPE* shape;
72 std::shared_ptr<SHAPE> shapeStorage;
73 std::shared_ptr<SHAPE> parentShape;
74 };
75
76private:
77
78 using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
79
80public:
81
83 {
84 for( int layer : LSET::AllLayersMask().Seq() )
85 m_tree[layer] = new drc_rtree();
86
87 m_count = 0;
88 }
89
91 {
92 for( drc_rtree* tree : m_tree )
93 {
94 for( DRC_RTREE::ITEM_WITH_SHAPE* el : *tree )
95 delete el;
96
97 delete tree;
98 }
99 }
100
104 void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aWorstClearance = 0 )
105 {
106 Insert( aItem, aLayer, aLayer, aWorstClearance );
107 }
108
113 void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
114 int aWorstClearance )
115 {
116 wxCHECK( aTargetLayer != UNDEFINED_LAYER, /* void */ );
117
118 if( ( aItem->Type() == PCB_FIELD_T || aItem->Type() == PCB_TEXT_T )
119 && !static_cast<PCB_TEXT*>( aItem )->IsVisible() )
120 {
121 return;
122 }
123
124 std::vector<const SHAPE*> subshapes;
125 std::shared_ptr<SHAPE> shape = aItem->GetEffectiveShape( aRefLayer );
126
127 wxCHECK2_MSG( shape, return, wxT( "Item does not have a valid shape for this layer" ) );
128
129 if( shape->HasIndexableSubshapes() )
130 shape->GetIndexableSubshapes( subshapes );
131 else
132 subshapes.push_back( shape.get() );
133
134 for( const SHAPE* subshape : subshapes )
135 {
136 if( dynamic_cast<const SHAPE_NULL*>( subshape ) )
137 continue;
138
139 BOX2I bbox = subshape->BBox();
140
141 bbox.Inflate( aWorstClearance );
142
143 const int mmin[2] = { bbox.GetX(), bbox.GetY() };
144 const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
145 ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, subshape, shape );
146
147 m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
148 m_count++;
149 }
150
151 if( aItem->Type() == PCB_PAD_T && aItem->HasHole() )
152 {
153 std::shared_ptr<SHAPE_SEGMENT> hole = aItem->GetEffectiveHoleShape();
154 BOX2I bbox = hole->BBox();
155
156 bbox.Inflate( aWorstClearance );
157
158 const int mmin[2] = { bbox.GetX(), bbox.GetY() };
159 const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
160 ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, hole, shape );
161
162 m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
163 m_count++;
164 }
165 }
166
170 void clear()
171 {
172 for( auto tree : m_tree )
173 tree->RemoveAll();
174
175 m_count = 0;
176 }
177
178 bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0,
179 std::function<bool( BOARD_ITEM*)> aFilter = nullptr ) const
180 {
181 BOX2I box = aRefShape->BBox();
182 box.Inflate( aClearance );
183
184 int min[2] = { box.GetX(), box.GetY() };
185 int max[2] = { box.GetRight(), box.GetBottom() };
186
187 int count = 0;
188
189 auto visit =
190 [&] ( ITEM_WITH_SHAPE* aItem ) -> bool
191 {
192 if( !aFilter || aFilter( aItem->parent ) )
193 {
194 int actual;
195
196 if( aRefShape->Collide( aItem->shape, aClearance, &actual ) )
197 {
198 count++;
199 return false;
200 }
201 }
202
203 return true;
204 };
205
206 this->m_tree[aTargetLayer]->Search( min, max, visit );
207 return count > 0;
208 }
209
215 int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
216 std::function<bool( BOARD_ITEM* )> aFilter = nullptr,
217 std::function<bool( BOARD_ITEM* )> aVisitor = nullptr,
218 int aClearance = 0 ) const
219 {
220 // keep track of BOARD_ITEMs that have already been found to collide (some items might
221 // be built of COMPOUND/triangulated shapes and a single subshape collision means we have
222 // a hit)
223 std::unordered_set<BOARD_ITEM*> collidingCompounds;
224
225 // keep track of results of client filter so we don't ask more than once for compound
226 // shapes
227 std::unordered_map<BOARD_ITEM*, bool> filterResults;
228
229 BOX2I box = aRefItem->GetBoundingBox();
230 box.Inflate( aClearance );
231
232 int min[2] = { box.GetX(), box.GetY() };
233 int max[2] = { box.GetRight(), box.GetBottom() };
234
235 std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
236
237 int count = 0;
238
239 auto visit =
240 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
241 {
242 if( aItem->parent == aRefItem )
243 return true;
244
245 if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
246 return true;
247
248 bool filtered;
249 auto it = filterResults.find( aItem->parent );
250
251 if( it == filterResults.end() )
252 {
253 filtered = aFilter && !aFilter( aItem->parent );
254 filterResults[ aItem->parent ] = filtered;
255 }
256 else
257 {
258 filtered = it->second;
259 }
260
261 if( filtered )
262 return true;
263
264 wxCHECK( aItem->shape, false );
265
266 if( refShape->Collide( aItem->shape, aClearance ) )
267 {
268 collidingCompounds.insert( aItem->parent );
269 count++;
270
271 if( aVisitor )
272 return aVisitor( aItem->parent );
273 }
274
275 return true;
276 };
277
278 this->m_tree[aTargetLayer]->Search( min, max, visit );
279 return count;
280 }
281
288 bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance,
289 int* aActual, VECTOR2I* aPos ) const
290 {
291 BOX2I bbox = aBox;
292 bbox.Inflate( aClearance );
293
294 int min[2] = { bbox.GetX(), bbox.GetY() };
295 int max[2] = { bbox.GetRight(), bbox.GetBottom() };
296
297 bool collision = false;
298 int actual = INT_MAX;
299 VECTOR2I pos;
300
301 auto visit =
302 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
303 {
304 int curActual;
305 VECTOR2I curPos;
306
307 if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) )
308 {
309 collision = true;
310
311 if( curActual < actual )
312 {
313 actual = curActual;
314 pos = curPos;
315 }
316
317 // Stop looking after we have a true collision
318 if( actual <= 0 )
319 return false;
320 }
321
322 return true;
323 };
324
325 this->m_tree[aLayer]->Search( min, max, visit );
326
327 if( collision )
328 {
329 if( aActual )
330 *aActual = std::max( 0, actual );
331
332 if( aPos )
333 *aPos = pos;
334
335 return true;
336 }
337
338 return false;
339 }
340
344 bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer ) const
345 {
346 SHAPE_POLY_SET* poly = dynamic_cast<SHAPE_POLY_SET*>( aRefShape );
347
348 int min[2] = { aBox.GetX(), aBox.GetY() };
349 int max[2] = { aBox.GetRight(), aBox.GetBottom() };
350 bool collision = false;
351
352 // Special case the polygon case. Otherwise we'll call its Collide() method which will
353 // triangulate it as well and then do triangle/triangle collisions. This ends up being
354 // *much* slower than 3 segment Collide()s and a PointInside().
355 auto polyVisitor =
356 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
357 {
358 const SHAPE* shape = aItem->shape;
359 wxASSERT( dynamic_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape ) );
360 auto tri = static_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape );
361
362 const SHAPE_LINE_CHAIN& outline = poly->Outline( 0 );
363
364 for( int ii = 0; ii < (int) tri->GetSegmentCount(); ++ii )
365 {
366 if( outline.Collide( tri->GetSegment( ii ) ) )
367 {
368 collision = true;
369 return false;
370 }
371 }
372
373 // Also must check for poly being completely inside the triangle
374 if( tri->PointInside( outline.CPoint( 0 ) ) )
375 {
376 collision = true;
377 return false;
378 }
379
380 return true;
381 };
382
383 auto visitor =
384 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
385 {
386 if( aRefShape->Collide( aItem->shape, 0 ) )
387 {
388 collision = true;
389 return false;
390 }
391
392 return true;
393 };
394
395 if( poly && poly->OutlineCount() == 1 && poly->HoleCount( 0 ) == 0 )
396 this->m_tree[aLayer]->Search( min, max, polyVisitor );
397 else
398 this->m_tree[aLayer]->Search( min, max, visitor );
399
400 return collision;
401 }
402
409 std::unordered_set<BOARD_ITEM*> GetObjectsAt( const VECTOR2I& aPt, PCB_LAYER_ID aLayer,
410 int aClearance = 0 )
411 {
412 std::unordered_set<BOARD_ITEM*> retval;
413 int min[2] = { aPt.x - aClearance, aPt.y - aClearance };
414 int max[2] = { aPt.x + aClearance, aPt.y + aClearance };
415
416 auto visitor =
417 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
418 {
419 retval.insert( aItem->parent );
420 return true;
421 };
422
423 m_tree[aLayer]->Search( min, max, visitor );
424
425 return retval;
426 }
427
428 typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
429
431 {
433 layerPair( aPair ),
434 refItem( aRef ),
435 testItem( aTest )
436 { };
437
441 };
442
443 int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector<LAYER_PAIR> aLayerPairs,
444 std::function<bool( const LAYER_PAIR&, ITEM_WITH_SHAPE*,
445 ITEM_WITH_SHAPE*, bool* aCollision )> aVisitor,
446 int aMaxClearance,
447 std::function<bool(int, int )> aProgressReporter ) const
448 {
449 std::vector<PAIR_INFO> pairsToVisit;
450
451 for( LAYER_PAIR& layerPair : aLayerPairs )
452 {
453 const PCB_LAYER_ID refLayer = layerPair.first;
454 const PCB_LAYER_ID targetLayer = layerPair.second;
455
456 for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) )
457 {
458 BOX2I box = refItem->shape->BBox();
459 box.Inflate( aMaxClearance );
460
461 int min[2] = { box.GetX(), box.GetY() };
462 int max[2] = { box.GetRight(), box.GetBottom() };
463
464 auto visit =
465 [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool
466 {
467 // don't collide items against themselves
468 if( aItemToTest->parent == refItem->parent )
469 return true;
470
471 pairsToVisit.emplace_back( layerPair, refItem, aItemToTest );
472 return true;
473 };
474
475 this->m_tree[targetLayer]->Search( min, max, visit );
476 };
477 }
478
479 // keep track of BOARD_ITEMs pairs that have been already found to collide (some items
480 // might be build of COMPOUND/triangulated shapes and a single subshape collision
481 // means we have a hit)
482 std::unordered_map<PTR_PTR_CACHE_KEY, int> collidingCompounds;
483
484 int progress = 0;
485 int count = pairsToVisit.size();
486
487 for( const PAIR_INFO& pair : pairsToVisit )
488 {
489 if( !aProgressReporter( progress++, count ) )
490 break;
491
492 BOARD_ITEM* a = pair.refItem->parent;
493 BOARD_ITEM* b = pair.testItem->parent;
494
495 // store canonical order so we don't collide in both directions (a:b and b:a)
496 if( static_cast<void*>( a ) > static_cast<void*>( b ) )
497 std::swap( a, b );
498
499 // don't report multiple collisions for compound or triangulated shapes
500 if( collidingCompounds.count( { a, b } ) )
501 continue;
502
503 bool collisionDetected = false;
504
505 if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) )
506 break;
507
508 if( collisionDetected )
509 collidingCompounds[ { a, b } ] = 1;
510 }
511
512 return 0;
513 }
514
520 size_t size() const
521 {
522 return m_count;
523 }
524
525 bool empty() const
526 {
527 return m_count == 0;
528 }
529
530 using iterator = typename drc_rtree::Iterator;
531
541 {
542 DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
543 {
544 m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
545 };
546
547 DRC_LAYER( drc_rtree* aTree, const BOX2I& aRect ) : layer_tree( aTree )
548 {
549 m_rect = { { aRect.GetX(), aRect.GetY() },
550 { aRect.GetRight(), aRect.GetBottom() } };
551 };
552
553 drc_rtree::Rect m_rect;
555
557 {
558 return layer_tree->begin( m_rect );
559 }
560
562 {
563 return layer_tree->end( m_rect );
564 }
565 };
566
568 {
569 return DRC_LAYER( m_tree[int( aLayer )] );
570 }
571
572 DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const VECTOR2I& aPoint, int aAccuracy = 0 ) const
573 {
574 BOX2I rect( aPoint, VECTOR2I( 0, 0 ) );
575 rect.Inflate( aAccuracy );
576 return DRC_LAYER( m_tree[int( aLayer )], rect );
577 }
578
579 DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const BOX2I& aRect ) const
580 {
581 return DRC_LAYER( m_tree[int( aLayer )], aRect );
582 }
583
584
585private:
587 size_t m_count;
588};
589
590
591#endif /* DRC_RTREE_H_ */
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Definition: board_item.h:79
virtual std::shared_ptr< SHAPE > GetEffectiveShape(PCB_LAYER_ID aLayer=UNDEFINED_LAYER, FLASHING aFlash=FLASHING::DEFAULT) const
Some pad shapes can be complex (rounded/chamfered rectangle), even without considering custom shapes.
Definition: board_item.cpp:279
virtual std::shared_ptr< SHAPE_SEGMENT > GetEffectiveHoleShape() const
Definition: board_item.cpp:289
virtual bool HasHole() const
Definition: board_item.h:155
constexpr BOX2< Vec > & Inflate(coord_type dx, coord_type dy)
Inflates the rectangle horizontally by dx and vertically by dy.
Definition: box2.h:558
constexpr coord_type GetY() const
Definition: box2.h:208
constexpr coord_type GetX() const
Definition: box2.h:207
constexpr coord_type GetRight() const
Definition: box2.h:217
constexpr coord_type GetBottom() const
Definition: box2.h:222
Implement an R-tree for fast spatial and layer indexing of connectable items.
Definition: drc_rtree.h:48
DRC_LAYER OnLayer(PCB_LAYER_ID aLayer) const
Definition: drc_rtree.h:567
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer, int aWorstClearance=0)
Insert an item into the tree on a particular layer with an optional worst clearance.
Definition: drc_rtree.h:104
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, int aWorstClearance)
Insert an item into the tree on a particular layer with a worst clearance.
Definition: drc_rtree.h:113
RTree< ITEM_WITH_SHAPE *, int, 2, double > drc_rtree
Definition: drc_rtree.h:78
size_t size() const
Return the number of items in the tree.
Definition: drc_rtree.h:520
typename drc_rtree::Iterator iterator
Definition: drc_rtree.h:530
bool empty() const
Definition: drc_rtree.h:525
int QueryColliding(BOARD_ITEM *aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function< bool(BOARD_ITEM *)> aFilter=nullptr, std::function< bool(BOARD_ITEM *)> aVisitor=nullptr, int aClearance=0) const
This is a fast test which essentially does bounding-box overlap given a worst-case clearance.
Definition: drc_rtree.h:215
DRC_RTREE()
Definition: drc_rtree.h:82
bool CheckColliding(SHAPE *aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance=0, std::function< bool(BOARD_ITEM *)> aFilter=nullptr) const
Definition: drc_rtree.h:178
~DRC_RTREE()
Definition: drc_rtree.h:90
DRC_LAYER Overlapping(PCB_LAYER_ID aLayer, const BOX2I &aRect) const
Definition: drc_rtree.h:579
std::unordered_set< BOARD_ITEM * > GetObjectsAt(const VECTOR2I &aPt, PCB_LAYER_ID aLayer, int aClearance=0)
Gets the BOARD_ITEMs that overlap the specified point/layer.
Definition: drc_rtree.h:409
drc_rtree * m_tree[PCB_LAYER_ID_COUNT]
Definition: drc_rtree.h:586
bool QueryColliding(const BOX2I &aBox, SHAPE *aRefShape, PCB_LAYER_ID aLayer) const
Quicker version of above that just reports a raw yes/no.
Definition: drc_rtree.h:344
void clear()
Remove all items from the RTree.
Definition: drc_rtree.h:170
std::pair< PCB_LAYER_ID, PCB_LAYER_ID > LAYER_PAIR
Definition: drc_rtree.h:428
size_t m_count
Definition: drc_rtree.h:587
DRC_LAYER Overlapping(PCB_LAYER_ID aLayer, const VECTOR2I &aPoint, int aAccuracy=0) const
Definition: drc_rtree.h:572
int QueryCollidingPairs(DRC_RTREE *aRefTree, std::vector< LAYER_PAIR > aLayerPairs, std::function< bool(const LAYER_PAIR &, ITEM_WITH_SHAPE *, ITEM_WITH_SHAPE *, bool *aCollision)> aVisitor, int aMaxClearance, std::function< bool(int, int)> aProgressReporter) const
Definition: drc_rtree.h:443
bool QueryColliding(const BOX2I &aBox, SHAPE *aRefShape, PCB_LAYER_ID aLayer, int aClearance, int *aActual, VECTOR2I *aPos) const
This one is for tessellated items.
Definition: drc_rtree.h:288
virtual const BOX2I GetBoundingBox() const
Return the orthogonal bounding box of this object for display purposes.
Definition: eda_item.cpp:77
KICAD_T Type() const
Returns the type of object.
Definition: eda_item.h:101
virtual bool IsVisible() const
Definition: eda_text.h:170
static LSET AllLayersMask()
Definition: lset.cpp:701
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
virtual bool Collide(const VECTOR2I &aP, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const override
Check if point aP lies closer to us than aClearance.
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
Represent a set of closed polygons.
int HoleCount(int aOutline) const
Returns the number of holes in a given outline.
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
int OutlineCount() const
Return the number of outlines in the set.
An abstract shape on 2D plane.
Definition: shape.h:126
virtual bool Collide(const VECTOR2I &aP, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const
Check if the boundary of shape (this) lies closer to the point aP than aClearance,...
Definition: shape.h:181
virtual const BOX2I BBox(int aClearance=0) const =0
Compute a bounding box of the shape, with a margin of aClearance a collision.
PCB_LAYER_ID
A quick note on layer IDs:
Definition: layer_ids.h:60
@ UNDEFINED_LAYER
Definition: layer_ids.h:61
@ PCB_LAYER_ID_COUNT
Definition: layer_ids.h:135
STL namespace.
The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree.
Definition: drc_rtree.h:541
iterator begin()
Definition: drc_rtree.h:556
drc_rtree::Rect m_rect
Definition: drc_rtree.h:553
drc_rtree * layer_tree
Definition: drc_rtree.h:554
DRC_LAYER(drc_rtree *aTree)
Definition: drc_rtree.h:542
DRC_LAYER(drc_rtree *aTree, const BOX2I &aRect)
Definition: drc_rtree.h:547
ITEM_WITH_SHAPE(BOARD_ITEM *aParent, const SHAPE *aShape, std::shared_ptr< SHAPE > aParentShape=nullptr)
Definition: drc_rtree.h:54
std::shared_ptr< SHAPE > parentShape
Definition: drc_rtree.h:73
ITEM_WITH_SHAPE(BOARD_ITEM *aParent, const std::shared_ptr< SHAPE > &aShape, std::shared_ptr< SHAPE > aParentShape=nullptr)
Definition: drc_rtree.h:62
std::shared_ptr< SHAPE > shapeStorage
Definition: drc_rtree.h:72
ITEM_WITH_SHAPE * refItem
Definition: drc_rtree.h:439
PAIR_INFO(LAYER_PAIR aPair, ITEM_WITH_SHAPE *aRef, ITEM_WITH_SHAPE *aTest)
Definition: drc_rtree.h:432
ITEM_WITH_SHAPE * testItem
Definition: drc_rtree.h:440
LAYER_PAIR layerPair
Definition: drc_rtree.h:438
@ PCB_TEXT_T
class PCB_TEXT, text on a layer
Definition: typeinfo.h:92
@ PCB_FIELD_T
class PCB_FIELD, text associated with a footprint property
Definition: typeinfo.h:90
@ PCB_PAD_T
class PAD, a pad in a footprint
Definition: typeinfo.h:87
VECTOR2< int32_t > VECTOR2I
Definition: vector2d.h:691