KiCad PCB EDA Suite
Loading...
Searching...
No Matches
drc_rtree.h
Go to the documentation of this file.
1/*
2 * This program source code file is part of KiCad, a free EDA CAD application.
3 *
4 * Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors.
5 * Copyright (C) 2020 CERN
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 3
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, you may find one here:
19 * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
20 * or you may search the http://www.gnu.org website for the version 3 license,
21 * or you may write to the Free Software Foundation, Inc.,
22 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25#ifndef DRC_RTREE_H_
26#define DRC_RTREE_H_
27
28#include <board_item.h>
29#include <pad.h>
30#include <pcb_text.h>
31#include <memory>
32#include <unordered_set>
33#include <set>
34#include <vector>
35
36#include <geometry/rtree.h>
37#include <geometry/shape.h>
39#include <math/vector2d.h>
40#include "geometry/shape_null.h"
41#include "board.h"
42
48{
49
50public:
51
53 {
54 ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const SHAPE* aShape,
55 std::shared_ptr<SHAPE> aParentShape = nullptr ) :
56 parent( aParent ),
57 shape( aShape ),
58 shapeStorage( nullptr ),
59 parentShape( std::move( aParentShape ) )
60 {};
61
62 ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const std::shared_ptr<SHAPE>& aShape,
63 std::shared_ptr<SHAPE> aParentShape = nullptr ) :
64 parent( aParent ),
65 shape( aShape.get() ),
66 shapeStorage( aShape ),
67 parentShape( std::move( aParentShape ) )
68 {};
69
71 const SHAPE* shape;
72 std::shared_ptr<SHAPE> shapeStorage;
73 std::shared_ptr<SHAPE> parentShape;
74 };
75
76private:
77
78 using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
79
80public:
81
83 {
84 for( int layer : LSET::AllLayersMask().Seq() )
85 m_tree[layer] = new drc_rtree();
86
87 m_count = 0;
88 }
89
91 {
92 for( drc_rtree* tree : m_tree )
93 {
94 for( DRC_RTREE::ITEM_WITH_SHAPE* el : *tree )
95 delete el;
96
97 delete tree;
98 }
99 }
100
104 void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aWorstClearance = 0 )
105 {
106 Insert( aItem, aLayer, aLayer, aWorstClearance );
107 }
108
113 void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
114 int aWorstClearance )
115 {
116 wxCHECK( aTargetLayer != UNDEFINED_LAYER, /* void */ );
117
118 if( ( aItem->Type() == PCB_FIELD_T || aItem->Type() == PCB_TEXT_T )
119 && !static_cast<PCB_TEXT*>( aItem )->IsVisible() )
120 {
121 return;
122 }
123
124 std::vector<const SHAPE*> subshapes;
125 std::shared_ptr<SHAPE> shape = aItem->GetEffectiveShape( aRefLayer );
126
127 if( shape->HasIndexableSubshapes() )
128 shape->GetIndexableSubshapes( subshapes );
129 else
130 subshapes.push_back( shape.get() );
131
132 for( const SHAPE* subshape : subshapes )
133 {
134 if( dynamic_cast<const SHAPE_NULL*>( subshape ) )
135 continue;
136
137 BOX2I bbox = subshape->BBox();
138
139 bbox.Inflate( aWorstClearance );
140
141 const int mmin[2] = { bbox.GetX(), bbox.GetY() };
142 const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
143 ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, subshape, shape );
144
145 m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
146 m_count++;
147 }
148
149 if( aItem->Type() == PCB_PAD_T && aItem->HasHole() )
150 {
151 std::shared_ptr<SHAPE_SEGMENT> hole = aItem->GetEffectiveHoleShape();
152 BOX2I bbox = hole->BBox();
153
154 bbox.Inflate( aWorstClearance );
155
156 const int mmin[2] = { bbox.GetX(), bbox.GetY() };
157 const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
158 ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, hole, shape );
159
160 m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
161 m_count++;
162 }
163 }
164
168 void clear()
169 {
170 for( auto tree : m_tree )
171 tree->RemoveAll();
172
173 m_count = 0;
174 }
175
176 bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0,
177 std::function<bool( BOARD_ITEM*)> aFilter = nullptr ) const
178 {
179 BOX2I box = aRefShape->BBox();
180 box.Inflate( aClearance );
181
182 int min[2] = { box.GetX(), box.GetY() };
183 int max[2] = { box.GetRight(), box.GetBottom() };
184
185 int count = 0;
186
187 auto visit =
188 [&] ( ITEM_WITH_SHAPE* aItem ) -> bool
189 {
190 if( !aFilter || aFilter( aItem->parent ) )
191 {
192 int actual;
193
194 if( aRefShape->Collide( aItem->shape, aClearance, &actual ) )
195 {
196 count++;
197 return false;
198 }
199 }
200
201 return true;
202 };
203
204 this->m_tree[aTargetLayer]->Search( min, max, visit );
205 return count > 0;
206 }
207
213 int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
214 std::function<bool( BOARD_ITEM* )> aFilter = nullptr,
215 std::function<bool( BOARD_ITEM* )> aVisitor = nullptr,
216 int aClearance = 0 ) const
217 {
218 // keep track of BOARD_ITEMs that have already been found to collide (some items might
219 // be built of COMPOUND/triangulated shapes and a single subshape collision means we have
220 // a hit)
221 std::unordered_set<BOARD_ITEM*> collidingCompounds;
222
223 // keep track of results of client filter so we don't ask more than once for compound
224 // shapes
225 std::unordered_map<BOARD_ITEM*, bool> filterResults;
226
227 BOX2I box = aRefItem->GetBoundingBox();
228 box.Inflate( aClearance );
229
230 int min[2] = { box.GetX(), box.GetY() };
231 int max[2] = { box.GetRight(), box.GetBottom() };
232
233 std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
234
235 int count = 0;
236
237 auto visit =
238 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
239 {
240 if( aItem->parent == aRefItem )
241 return true;
242
243 if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
244 return true;
245
246 bool filtered;
247 auto it = filterResults.find( aItem->parent );
248
249 if( it == filterResults.end() )
250 {
251 filtered = aFilter && !aFilter( aItem->parent );
252 filterResults[ aItem->parent ] = filtered;
253 }
254 else
255 {
256 filtered = it->second;
257 }
258
259 if( filtered )
260 return true;
261
262 if( refShape->Collide( aItem->shape, aClearance ) )
263 {
264 collidingCompounds.insert( aItem->parent );
265 count++;
266
267 if( aVisitor )
268 return aVisitor( aItem->parent );
269 }
270
271 return true;
272 };
273
274 this->m_tree[aTargetLayer]->Search( min, max, visit );
275 return count;
276 }
277
284 bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance,
285 int* aActual, VECTOR2I* aPos ) const
286 {
287 BOX2I bbox = aBox;
288 bbox.Inflate( aClearance );
289
290 int min[2] = { bbox.GetX(), bbox.GetY() };
291 int max[2] = { bbox.GetRight(), bbox.GetBottom() };
292
293 bool collision = false;
294 int actual = INT_MAX;
295 VECTOR2I pos;
296
297 auto visit =
298 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
299 {
300 int curActual;
301 VECTOR2I curPos;
302
303 if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) )
304 {
305 collision = true;
306
307 if( curActual < actual )
308 {
309 actual = curActual;
310 pos = curPos;
311 }
312
313 // Stop looking after we have a true collision
314 if( actual <= 0 )
315 return false;
316 }
317
318 return true;
319 };
320
321 this->m_tree[aLayer]->Search( min, max, visit );
322
323 if( collision )
324 {
325 if( aActual )
326 *aActual = std::max( 0, actual );
327
328 if( aPos )
329 *aPos = pos;
330
331 return true;
332 }
333
334 return false;
335 }
336
340 bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer ) const
341 {
342 SHAPE_POLY_SET* poly = dynamic_cast<SHAPE_POLY_SET*>( aRefShape );
343
344 int min[2] = { aBox.GetX(), aBox.GetY() };
345 int max[2] = { aBox.GetRight(), aBox.GetBottom() };
346 bool collision = false;
347
348 // Special case the polygon case. Otherwise we'll call its Collide() method which will
349 // triangulate it as well and then do triangle/triangle collisions. This ends up being
350 // *much* slower than 3 segment Collide()s and a PointInside().
351 auto polyVisitor =
352 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
353 {
354 const SHAPE* shape = aItem->shape;
355 wxASSERT( dynamic_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape ) );
356 auto tri = static_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape );
357
358 const SHAPE_LINE_CHAIN& outline = poly->Outline( 0 );
359
360 for( int ii = 0; ii < (int) tri->GetSegmentCount(); ++ii )
361 {
362 if( outline.Collide( tri->GetSegment( ii ) ) )
363 {
364 collision = true;
365 return false;
366 }
367 }
368
369 // Also must check for poly being completely inside the triangle
370 if( tri->PointInside( outline.CPoint( 0 ) ) )
371 {
372 collision = true;
373 return false;
374 }
375
376 return true;
377 };
378
379 auto visitor =
380 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
381 {
382 if( aRefShape->Collide( aItem->shape, 0 ) )
383 {
384 collision = true;
385 return false;
386 }
387
388 return true;
389 };
390
391 if( poly && poly->OutlineCount() == 1 && poly->HoleCount( 0 ) == 0 )
392 this->m_tree[aLayer]->Search( min, max, polyVisitor );
393 else
394 this->m_tree[aLayer]->Search( min, max, visitor );
395
396 return collision;
397 }
398
405 std::unordered_set<BOARD_ITEM*> GetObjectsAt( const VECTOR2I& aPt, PCB_LAYER_ID aLayer,
406 int aClearance = 0 )
407 {
408 std::unordered_set<BOARD_ITEM*> retval;
409 int min[2] = { aPt.x - aClearance, aPt.y - aClearance };
410 int max[2] = { aPt.x + aClearance, aPt.y + aClearance };
411
412 auto visitor =
413 [&]( ITEM_WITH_SHAPE* aItem ) -> bool
414 {
415 retval.insert( aItem->parent );
416 return true;
417 };
418
419 m_tree[aLayer]->Search( min, max, visitor );
420
421 return retval;
422 }
423
424 typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
425
427 {
429 layerPair( aPair ),
430 refItem( aRef ),
431 testItem( aTest )
432 { };
433
437 };
438
439 int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector<LAYER_PAIR> aLayerPairs,
440 std::function<bool( const LAYER_PAIR&, ITEM_WITH_SHAPE*,
441 ITEM_WITH_SHAPE*, bool* aCollision )> aVisitor,
442 int aMaxClearance,
443 std::function<bool(int, int )> aProgressReporter ) const
444 {
445 std::vector<PAIR_INFO> pairsToVisit;
446
447 for( LAYER_PAIR& layerPair : aLayerPairs )
448 {
449 const PCB_LAYER_ID refLayer = layerPair.first;
450 const PCB_LAYER_ID targetLayer = layerPair.second;
451
452 for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) )
453 {
454 BOX2I box = refItem->shape->BBox();
455 box.Inflate( aMaxClearance );
456
457 int min[2] = { box.GetX(), box.GetY() };
458 int max[2] = { box.GetRight(), box.GetBottom() };
459
460 auto visit =
461 [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool
462 {
463 // don't collide items against themselves
464 if( aItemToTest->parent == refItem->parent )
465 return true;
466
467 pairsToVisit.emplace_back( layerPair, refItem, aItemToTest );
468 return true;
469 };
470
471 this->m_tree[targetLayer]->Search( min, max, visit );
472 };
473 }
474
475 // keep track of BOARD_ITEMs pairs that have been already found to collide (some items
476 // might be build of COMPOUND/triangulated shapes and a single subshape collision
477 // means we have a hit)
478 std::unordered_map<PTR_PTR_CACHE_KEY, int> collidingCompounds;
479
480 int progress = 0;
481 int count = pairsToVisit.size();
482
483 for( const PAIR_INFO& pair : pairsToVisit )
484 {
485 if( !aProgressReporter( progress++, count ) )
486 break;
487
488 BOARD_ITEM* a = pair.refItem->parent;
489 BOARD_ITEM* b = pair.testItem->parent;
490
491 // store canonical order so we don't collide in both directions (a:b and b:a)
492 if( static_cast<void*>( a ) > static_cast<void*>( b ) )
493 std::swap( a, b );
494
495 // don't report multiple collisions for compound or triangulated shapes
496 if( collidingCompounds.count( { a, b } ) )
497 continue;
498
499 bool collisionDetected = false;
500
501 if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) )
502 break;
503
504 if( collisionDetected )
505 collidingCompounds[ { a, b } ] = 1;
506 }
507
508 return 0;
509 }
510
516 size_t size() const
517 {
518 return m_count;
519 }
520
521 bool empty() const
522 {
523 return m_count == 0;
524 }
525
526 using iterator = typename drc_rtree::Iterator;
527
537 {
538 DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
539 {
540 m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
541 };
542
543 DRC_LAYER( drc_rtree* aTree, const BOX2I& aRect ) : layer_tree( aTree )
544 {
545 m_rect = { { aRect.GetX(), aRect.GetY() },
546 { aRect.GetRight(), aRect.GetBottom() } };
547 };
548
549 drc_rtree::Rect m_rect;
551
553 {
554 return layer_tree->begin( m_rect );
555 }
556
558 {
559 return layer_tree->end( m_rect );
560 }
561 };
562
564 {
565 return DRC_LAYER( m_tree[int( aLayer )] );
566 }
567
568 DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const VECTOR2I& aPoint, int aAccuracy = 0 ) const
569 {
570 BOX2I rect( aPoint, VECTOR2I( 0, 0 ) );
571 rect.Inflate( aAccuracy );
572 return DRC_LAYER( m_tree[int( aLayer )], rect );
573 }
574
575 DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const BOX2I& aRect ) const
576 {
577 return DRC_LAYER( m_tree[int( aLayer )], aRect );
578 }
579
580
581private:
583 size_t m_count;
584};
585
586
587#endif /* DRC_RTREE_H_ */
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Definition: board_item.h:77
virtual std::shared_ptr< SHAPE > GetEffectiveShape(PCB_LAYER_ID aLayer=UNDEFINED_LAYER, FLASHING aFlash=FLASHING::DEFAULT) const
Some pad shapes can be complex (rounded/chamfered rectangle), even without considering custom shapes.
Definition: board_item.cpp:228
virtual std::shared_ptr< SHAPE_SEGMENT > GetEffectiveHoleShape() const
Definition: board_item.cpp:238
virtual bool HasHole() const
Definition: board_item.h:156
coord_type GetY() const
Definition: box2.h:198
BOX2< Vec > & Inflate(coord_type dx, coord_type dy)
Inflates the rectangle horizontally by dx and vertically by dy.
Definition: box2.h:541
coord_type GetX() const
Definition: box2.h:197
coord_type GetRight() const
Definition: box2.h:207
coord_type GetBottom() const
Definition: box2.h:212
Implement an R-tree for fast spatial and layer indexing of connectable items.
Definition: drc_rtree.h:48
DRC_LAYER OnLayer(PCB_LAYER_ID aLayer) const
Definition: drc_rtree.h:563
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aLayer, int aWorstClearance=0)
Insert an item into the tree on a particular layer with an optional worst clearance.
Definition: drc_rtree.h:104
void Insert(BOARD_ITEM *aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, int aWorstClearance)
Insert an item into the tree on a particular layer with a worst clearance.
Definition: drc_rtree.h:113
RTree< ITEM_WITH_SHAPE *, int, 2, double > drc_rtree
Definition: drc_rtree.h:78
size_t size() const
Return the number of items in the tree.
Definition: drc_rtree.h:516
typename drc_rtree::Iterator iterator
Definition: drc_rtree.h:526
bool empty() const
Definition: drc_rtree.h:521
int QueryColliding(BOARD_ITEM *aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function< bool(BOARD_ITEM *)> aFilter=nullptr, std::function< bool(BOARD_ITEM *)> aVisitor=nullptr, int aClearance=0) const
This is a fast test which essentially does bounding-box overlap given a worst-case clearance.
Definition: drc_rtree.h:213
DRC_RTREE()
Definition: drc_rtree.h:82
bool CheckColliding(SHAPE *aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance=0, std::function< bool(BOARD_ITEM *)> aFilter=nullptr) const
Definition: drc_rtree.h:176
~DRC_RTREE()
Definition: drc_rtree.h:90
DRC_LAYER Overlapping(PCB_LAYER_ID aLayer, const BOX2I &aRect) const
Definition: drc_rtree.h:575
std::unordered_set< BOARD_ITEM * > GetObjectsAt(const VECTOR2I &aPt, PCB_LAYER_ID aLayer, int aClearance=0)
Gets the BOARD_ITEMs that overlap the specified point/layer.
Definition: drc_rtree.h:405
drc_rtree * m_tree[PCB_LAYER_ID_COUNT]
Definition: drc_rtree.h:582
bool QueryColliding(const BOX2I &aBox, SHAPE *aRefShape, PCB_LAYER_ID aLayer) const
Quicker version of above that just reports a raw yes/no.
Definition: drc_rtree.h:340
void clear()
Remove all items from the RTree.
Definition: drc_rtree.h:168
std::pair< PCB_LAYER_ID, PCB_LAYER_ID > LAYER_PAIR
Definition: drc_rtree.h:424
size_t m_count
Definition: drc_rtree.h:583
DRC_LAYER Overlapping(PCB_LAYER_ID aLayer, const VECTOR2I &aPoint, int aAccuracy=0) const
Definition: drc_rtree.h:568
int QueryCollidingPairs(DRC_RTREE *aRefTree, std::vector< LAYER_PAIR > aLayerPairs, std::function< bool(const LAYER_PAIR &, ITEM_WITH_SHAPE *, ITEM_WITH_SHAPE *, bool *aCollision)> aVisitor, int aMaxClearance, std::function< bool(int, int)> aProgressReporter) const
Definition: drc_rtree.h:439
bool QueryColliding(const BOX2I &aBox, SHAPE *aRefShape, PCB_LAYER_ID aLayer, int aClearance, int *aActual, VECTOR2I *aPos) const
This one is for tessellated items.
Definition: drc_rtree.h:284
virtual const BOX2I GetBoundingBox() const
Return the orthogonal bounding box of this object for display purposes.
Definition: eda_item.cpp:74
KICAD_T Type() const
Returns the type of object.
Definition: eda_item.h:100
virtual bool IsVisible() const
Definition: eda_text.h:151
static LSET AllLayersMask()
Definition: lset.cpp:898
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
virtual bool Collide(const VECTOR2I &aP, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const override
Check if point aP lies closer to us than aClearance.
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
Represent a set of closed polygons.
int HoleCount(int aOutline) const
Returns the number of holes in a given outline.
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
int OutlineCount() const
Return the number of outlines in the set.
An abstract shape on 2D plane.
Definition: shape.h:126
virtual bool Collide(const VECTOR2I &aP, int aClearance=0, int *aActual=nullptr, VECTOR2I *aLocation=nullptr) const
Check if the boundary of shape (this) lies closer to the point aP than aClearance,...
Definition: shape.h:181
virtual const BOX2I BBox(int aClearance=0) const =0
Compute a bounding box of the shape, with a margin of aClearance a collision.
PCB_LAYER_ID
A quick note on layer IDs:
Definition: layer_ids.h:60
@ UNDEFINED_LAYER
Definition: layer_ids.h:61
@ PCB_LAYER_ID_COUNT
Definition: layer_ids.h:137
STL namespace.
The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree.
Definition: drc_rtree.h:537
iterator begin()
Definition: drc_rtree.h:552
drc_rtree::Rect m_rect
Definition: drc_rtree.h:549
drc_rtree * layer_tree
Definition: drc_rtree.h:550
DRC_LAYER(drc_rtree *aTree)
Definition: drc_rtree.h:538
DRC_LAYER(drc_rtree *aTree, const BOX2I &aRect)
Definition: drc_rtree.h:543
ITEM_WITH_SHAPE(BOARD_ITEM *aParent, const SHAPE *aShape, std::shared_ptr< SHAPE > aParentShape=nullptr)
Definition: drc_rtree.h:54
std::shared_ptr< SHAPE > parentShape
Definition: drc_rtree.h:73
ITEM_WITH_SHAPE(BOARD_ITEM *aParent, const std::shared_ptr< SHAPE > &aShape, std::shared_ptr< SHAPE > aParentShape=nullptr)
Definition: drc_rtree.h:62
std::shared_ptr< SHAPE > shapeStorage
Definition: drc_rtree.h:72
ITEM_WITH_SHAPE * refItem
Definition: drc_rtree.h:435
PAIR_INFO(LAYER_PAIR aPair, ITEM_WITH_SHAPE *aRef, ITEM_WITH_SHAPE *aTest)
Definition: drc_rtree.h:428
ITEM_WITH_SHAPE * testItem
Definition: drc_rtree.h:436
LAYER_PAIR layerPair
Definition: drc_rtree.h:434
@ PCB_TEXT_T
class PCB_TEXT, text on a layer
Definition: typeinfo.h:92
@ PCB_FIELD_T
class PCB_FIELD, text associated with a footprint property
Definition: typeinfo.h:90
@ PCB_PAD_T
class PAD, a pad in a footprint
Definition: typeinfo.h:87
VECTOR2< int32_t > VECTOR2I
Definition: vector2d.h:638