KiCad PCB EDA Suite
ROUND_SEGMENT Class Reference

#include <round_segment_3d.h>

Inheritance diagram for ROUND_SEGMENT:
OBJECT_3D

Public Member Functions

 ROUND_SEGMENT (const ROUND_SEGMENT_2D &aSeg2D, float aZmin, float aZmax)
 
void SetColor (SFVEC3F aObjColor)
 
bool Intersect (const RAY &aRay, HITINFO &aHitInfo) const override
 
bool IntersectP (const RAY &aRay, float aMaxDistance) const override
 
bool Intersects (const BBOX_3D &aBBox) const override
 
SFVEC3F GetDiffuseColor (const HITINFO &aHitInfo) const override
 
const void SetBoardItem (BOARD_ITEM *aBoardItem)
 
BOARD_ITEMGetBoardItem () const
 
void SetMaterial (const MATERIAL *aMaterial)
 
const MATERIALGetMaterial () const
 
float GetModelTransparency () const
 
void SetModelTransparency (float aModelTransparency)
 
const BBOX_3DGetBBox () const
 
const SFVEC3FGetCentroid () const
 

Protected Attributes

BBOX_3D m_bbox
 
SFVEC3F m_centroid
 
OBJECT_3D_TYPE m_obj_type
 
const MATERIALm_material
 
BOARD_ITEMm_boardItem
 
float m_modelTransparency
 

Private Attributes

RAYSEG2D m_segment
 
SFVEC3F m_center_left
 
SFVEC3F m_center_right
 
SFVEC3F m_plane_dir_left
 
SFVEC3F m_plane_dir_right
 
float m_radius
 
float m_radius_squared
 
float m_inv_radius
 
float m_seglen_over_two_squared
 
SFVEC3F m_diffusecolor
 

Detailed Description

Definition at line 36 of file round_segment_3d.h.

Constructor & Destructor Documentation

◆ ROUND_SEGMENT()

ROUND_SEGMENT::ROUND_SEGMENT ( const ROUND_SEGMENT_2D aSeg2D,
float  aZmin,
float  aZmax 
)

Definition at line 33 of file round_segment_3d.cpp.

33 :
35 m_segment( aSeg2D.m_segment )
36{
37 m_radius = aSeg2D.GetRadius();
39 m_inv_radius = 1.0f / m_radius;
40
43
44 m_bbox.Reset();
45
47 SFVEC3F( m_segment.m_End.x, m_segment.m_End.y, aZmax ) );
48
50 m_bbox.Max() + SFVEC3F( m_radius, m_radius, 0.0f ) );
51
54
57
59}
BBOX_3D m_bbox
Definition: object_3d.h:97
SFVEC3F m_centroid
Definition: object_3d.h:98
OBJECT_3D(OBJECT_3D_TYPE aObjType)
Definition: object_3d.cpp:41
float GetRadius() const
RAYSEG2D m_segment
float m_seglen_over_two_squared
SFVEC3F m_plane_dir_right
SFVEC3F m_center_left
SFVEC3F m_center_right
SFVEC3F m_plane_dir_left
void ScaleNextUp()
Scale a bounding box to the next float representation making it larger.
Definition: bbox_3d.cpp:194
SFVEC3F GetCenter() const
Return the center point of the bounding box.
Definition: bbox_3d.cpp:132
const SFVEC3F & Min() const
Return the minimum vertex pointer.
Definition: bbox_3d.h:183
const SFVEC3F & Max() const
Return the maximum vertex pointer.
Definition: bbox_3d.h:190
void Set(const SFVEC3F &aPbMin, const SFVEC3F &aPbMax)
Set bounding box with new parameters.
Definition: bbox_3d.cpp:68
void Reset()
Reset the bounding box to zero and de-initialize it.
Definition: bbox_3d.cpp:95
float m_Length
Definition: ray.h:112
SFVEC2F m_Dir
Definition: ray.h:110
SFVEC2F m_Start
Definition: ray.h:107
SFVEC2F m_End
Definition: ray.h:108
glm::vec3 SFVEC3F
Definition: xv3d_types.h:44

References BBOX_3D::GetCenter(), ROUND_SEGMENT_2D::GetRadius(), OBJECT_3D::m_bbox, m_center_left, m_center_right, OBJECT_3D::m_centroid, RAYSEG2D::m_Dir, RAYSEG2D::m_End, m_inv_radius, RAYSEG2D::m_Length, m_plane_dir_left, m_plane_dir_right, m_radius, m_radius_squared, m_seglen_over_two_squared, m_segment, RAYSEG2D::m_Start, BBOX_3D::Max(), BBOX_3D::Min(), BBOX_3D::Reset(), ROUNDSEG, BBOX_3D::ScaleNextUp(), and BBOX_3D::Set().

Member Function Documentation

◆ GetBBox()

const BBOX_3D & OBJECT_3D::GetBBox ( ) const
inlineinherited

Definition at line 92 of file object_3d.h.

92{ return m_bbox; }

References OBJECT_3D::m_bbox.

Referenced by CONTAINER_3D_BASE::Add(), and BVH_PBRT::Intersect().

◆ GetBoardItem()

BOARD_ITEM * OBJECT_3D::GetBoardItem ( ) const
inlineinherited

Definition at line 56 of file object_3d.h.

56{ return m_boardItem; }
BOARD_ITEM * m_boardItem
Definition: object_3d.h:102

References OBJECT_3D::m_boardItem.

Referenced by RENDER_3D_RAYTRACE::IntersectBoardItem().

◆ GetCentroid()

const SFVEC3F & OBJECT_3D::GetCentroid ( ) const
inlineinherited

Definition at line 94 of file object_3d.h.

94{ return m_centroid; }

References OBJECT_3D::m_centroid.

◆ GetDiffuseColor()

SFVEC3F ROUND_SEGMENT::GetDiffuseColor ( const HITINFO aHitInfo) const
overridevirtual

Implements OBJECT_3D.

Definition at line 418 of file round_segment_3d.cpp.

419{
420 return m_diffusecolor;
421}
SFVEC3F m_diffusecolor

References m_diffusecolor.

◆ GetMaterial()

const MATERIAL * OBJECT_3D::GetMaterial ( ) const
inlineinherited

Definition at line 64 of file object_3d.h.

64{ return m_material; }
const MATERIAL * m_material
Definition: object_3d.h:100

References OBJECT_3D::m_material.

Referenced by BVH_PBRT::IntersectP(), and RENDER_3D_RAYTRACE::shadeHit().

◆ GetModelTransparency()

float OBJECT_3D::GetModelTransparency ( ) const
inlineinherited

Definition at line 65 of file object_3d.h.

65{ return m_modelTransparency; }
float m_modelTransparency
Definition: object_3d.h:106

References OBJECT_3D::m_modelTransparency.

Referenced by RENDER_3D_RAYTRACE::shadeHit().

◆ Intersect()

bool ROUND_SEGMENT::Intersect ( const RAY aRay,
HITINFO aHitInfo 
) const
overridevirtual
Returns
true if the aRay intersects the object.

Implements OBJECT_3D.

Definition at line 62 of file round_segment_3d.cpp.

63{
64 // Top / Bottom plane
65 float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;
66
67 float tPlane = ( zPlanePos - aRay.m_Origin.z ) * aRay.m_InvDir.z;
68
69 if( ( tPlane >= aHitInfo.m_tHit ) || ( tPlane < FLT_EPSILON ) )
70 return false; // Early exit
71
72 SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
73 aRay.m_Origin.y + aRay.m_Dir.y * tPlane );
74
75 float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );
76
77 if( dSquared <= m_radius_squared )
78 {
79 if( tPlane < aHitInfo.m_tHit )
80 {
81 aHitInfo.m_tHit = tPlane;
82 aHitInfo.m_HitPoint = SFVEC3F( planeHitPoint2d.x, planeHitPoint2d.y,
83 aRay.m_Origin.z + aRay.m_Dir.z * tPlane );
84 aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, aRay.m_dirIsNeg[2] ? 1.0f : -1.0f );
85 aHitInfo.pHitObject = this;
86
87 m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
88
89 return true;
90 }
91
92 return false;
93 }
94
95 // Test LEFT / RIGHT plane
96 float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );
97
98 if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
99 {
100 const float n_dot_ray_origin = glm::dot( m_plane_dir_right,
101 m_center_right - aRay.m_Origin );
102 const float t = n_dot_ray_origin / normal_dot_ray;
103
104 if( t > 0.0f )
105 {
106 const SFVEC3F hitP = aRay.at( t );
107
108 const SFVEC3F v = hitP - m_center_right;
109 const float len = glm::dot( v, v );
110
111 if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z )
112 && ( hitP.z <= m_bbox.Max().z ) )
113 {
114 if( t < aHitInfo.m_tHit )
115 {
116 aHitInfo.m_tHit = t;
117 aHitInfo.m_HitPoint = hitP;
119 0.0f );
120 aHitInfo.pHitObject = this;
121
122 m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
123
124 return true;
125 }
126
127 return false;
128 }
129 }
130 }
131 else
132 {
133 normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );
134
135 if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
136 {
137 const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
138 m_center_left - aRay.m_Origin );
139 const float t = n_dot_ray_origin / normal_dot_ray;
140
141 if( t > 0.0f )
142 {
143 const SFVEC3F hitP = aRay.at( t );
144
145 const SFVEC3F v = hitP - m_center_left;
146 const float len = glm::dot( v, v );
147
148 if( ( len <= m_seglen_over_two_squared ) && ( hitP.z >= m_bbox.Min().z )
149 && ( hitP.z <= m_bbox.Max().z ) )
150 {
151 if( t < aHitInfo.m_tHit )
152 {
153 aHitInfo.m_tHit = t;
154 aHitInfo.m_HitPoint = hitP;
156 0.0f );
157 aHitInfo.pHitObject = this;
158
159 m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
160
161 return true;
162 }
163
164 return false;
165 }
166 }
167 }
168 }
169
170 // Based on: http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
171 // Ray-sphere intersection: geometric
172 const double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
173 const double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;
174
175 const double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
176
177 const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
178 (double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
179
180 const double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
181 (double)aRay.m_Dir.y * (double)OCy_Start;
182
183 const double c_Start = p_dot_p_Start - m_radius_squared;
184
185 const float delta_Start = (float) ( b_Start * b_Start - a * c_Start );
186
187 if( delta_Start > FLT_EPSILON )
188 {
189 const float sdelta = sqrtf( delta_Start );
190 const float t = ( -b_Start - sdelta ) / a;
191 const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
192
193 if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) )
194 {
195 if( t < aHitInfo.m_tHit )
196 {
197 aHitInfo.m_tHit = t;
198 aHitInfo.m_HitPoint = aRay.at( t );
199
200 const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x, aHitInfo.m_HitPoint.y );
201
202 aHitInfo.m_HitNormal =
203 SFVEC3F( ( hitPoint2D.x - m_segment.m_Start.x ) * m_inv_radius,
204 ( hitPoint2D.y - m_segment.m_Start.y ) * m_inv_radius, 0.0f );
205
206 aHitInfo.pHitObject = this;
207
208 m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
209
210 return true;
211 }
212
213 return false;
214 }
215 }
216
217 const double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
218 const double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;
219
220 const double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;
221
222 const double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
223 (double)aRay.m_Dir.y * (double)OCy_End;
224
225 const double c_End = p_dot_p_End - m_radius_squared;
226
227 const float delta_End = (float)(b_End * b_End - a * c_End);
228
229 if( delta_End > FLT_EPSILON )
230 {
231 const float sdelta = sqrtf( delta_End );
232 const float t = ( -b_End - sdelta ) / a;
233 const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
234
235 if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) )
236 {
237 if( t < aHitInfo.m_tHit )
238 {
239 aHitInfo.m_tHit = t;
240 aHitInfo.m_HitPoint = aRay.at( t );
241
242 const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x, aHitInfo.m_HitPoint.y );
243
244 aHitInfo.m_HitNormal =
245 SFVEC3F( ( hitPoint2D.x - m_segment.m_End.x ) * m_inv_radius,
246 ( hitPoint2D.y - m_segment.m_End.y ) * m_inv_radius, 0.0f );
247 aHitInfo.pHitObject = this;
248
249 m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
250
251 return true;
252 }
253
254 return false;
255 }
256 }
257
258 return false;
259}
void Generate(SFVEC3F &aNormal, const RAY &aRay, const HITINFO &aHitInfo) const
Definition: material.cpp:89
float m_tHit
( 4) distance
Definition: hitinfo.h:38
const OBJECT_3D * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:40
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:37
SFVEC3F m_HitPoint
(12) hit position
Definition: hitinfo.h:44
float DistanceToPointSquared(const SFVEC2F &aPoint) const
Definition: ray.cpp:294
SFVEC3F m_Dir
Definition: ray.h:67
unsigned int m_dirIsNeg[3]
Definition: ray.h:75
SFVEC3F m_InvDir
Definition: ray.h:70
SFVEC3F m_Origin
Definition: ray.h:64
SFVEC3F at(float t) const
Definition: ray.h:84
glm::vec2 SFVEC2F
Definition: xv3d_types.h:42

References RAY::at(), RAYSEG2D::DistanceToPointSquared(), MATERIAL::Generate(), OBJECT_3D::m_bbox, m_center_left, m_center_right, RAY::m_Dir, RAY::m_dirIsNeg, RAYSEG2D::m_End, HITINFO::m_HitNormal, HITINFO::m_HitPoint, m_inv_radius, RAY::m_InvDir, OBJECT_3D::m_material, RAY::m_Origin, m_plane_dir_left, m_plane_dir_right, m_radius_squared, m_seglen_over_two_squared, m_segment, RAYSEG2D::m_Start, HITINFO::m_tHit, BBOX_3D::Max(), BBOX_3D::Min(), and HITINFO::pHitObject.

◆ IntersectP()

bool ROUND_SEGMENT::IntersectP ( const RAY aRay,
float  aMaxDistance 
) const
overridevirtual
Parameters
aMaxDistanceis the maximum distance of the test.
Returns
true if aRay intersects the object.
Todo:
Either fix the code below or get rid of it.

Implements OBJECT_3D.

Definition at line 262 of file round_segment_3d.cpp.

263{
264 // Top / Bottom plane
265 const float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;
266
267 const float tPlane = ( zPlanePos - aRay.m_Origin.z ) * aRay.m_InvDir.z;
268
269 if( ( tPlane >= aMaxDistance) || ( tPlane < FLT_EPSILON ) )
270 return false; // Early exit
271
272 const SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
273 aRay.m_Origin.y + aRay.m_Dir.y * tPlane );
274
275 const float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );
276
277 if( dSquared <= m_radius_squared )
278 {
279 if( tPlane < aMaxDistance )
280 return true;
281
282 return false;
283 }
284
285 // Since the IntersectP is used for shadows, we are simplifying the test
286 // intersection and only consider the top/bottom plane of the segment
287 return false;
288
290#if 0
291 // Test LEFT / RIGHT plane
292 float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );
293
294 if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
295 {
296 float n_dot_ray_origin = glm::dot( m_plane_dir_right, m_center_right - aRay.m_Origin );
297 float t = n_dot_ray_origin / normal_dot_ray;
298
299 if( t > 0.0f )
300 {
301 SFVEC3F hitP = aRay.at( t );
302
303 SFVEC3F v = hitP - m_center_right;
304 float len = glm::dot( v, v );
305
306 if( ( len <= m_seglen_over_two_squared ) &&
307 ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) )
308 {
309 if( t < aMaxDistance )
310 return true;
311
312 return false;
313 }
314 }
315 }
316 else
317 {
318 normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );
319
320 if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
321 {
322 const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
323 m_center_left - aRay.m_Origin );
324 const float t = n_dot_ray_origin / normal_dot_ray;
325
326 if( t > 0.0f )
327 {
328 SFVEC3F hitP = aRay.at( t );
329
330 SFVEC3F v = hitP - m_center_left;
331 float len = glm::dot( v, v );
332
333 if( ( len <= m_seglen_over_two_squared ) &&
334 ( hitP.z >= m_bbox.Min().z ) && ( hitP.z <= m_bbox.Max().z ) )
335 {
336 if( t < aMaxDistance )
337 return true;
338
339 return false;
340 }
341 }
342 }
343 }
344
345 // Based on: http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
346 // Ray-sphere intersection: geometric
347
348 double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
349 double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;
350
351 double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
352
353 double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
354 (double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
355
356 double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
357 (double)aRay.m_Dir.y * (double)OCy_Start;
358
359 double c_Start = p_dot_p_Start - m_radius_squared;
360
361 float delta_Start = (float)(b_Start * b_Start - a * c_Start);
362
363 if( delta_Start > FLT_EPSILON )
364 {
365 float sdelta = sqrtf( delta_Start );
366 float t = (-b_Start - sdelta) / a;
367 float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
368
369 if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) )
370 {
371 if( t < aMaxDistance )
372 return true;
373
374 return false;
375 }
376 }
377
378 double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
379 double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;
380
381 double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;
382
383
384 double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
385 (double)aRay.m_Dir.y * (double)OCy_End;
386
387 double c_End = p_dot_p_End - m_radius_squared;
388
389 float delta_End = (float)(b_End * b_End - a * c_End);
390
391 if( delta_End > FLT_EPSILON )
392 {
393 float sdelta = sqrtf( delta_End );
394 float t = ( -b_End - sdelta ) / a;
395 float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
396
397 if( ( z >= m_bbox.Min().z ) && ( z <= m_bbox.Max().z ) )
398 {
399 if( t < aMaxDistance )
400 return true;
401
402 return false;
403 }
404 }
405
406 return false;
407#endif
408}

References RAY::at(), RAYSEG2D::DistanceToPointSquared(), OBJECT_3D::m_bbox, m_center_left, m_center_right, RAY::m_Dir, RAY::m_dirIsNeg, RAYSEG2D::m_End, RAY::m_InvDir, RAY::m_Origin, m_plane_dir_left, m_plane_dir_right, m_radius_squared, m_seglen_over_two_squared, m_segment, RAYSEG2D::m_Start, BBOX_3D::Max(), and BBOX_3D::Min().

◆ Intersects()

bool ROUND_SEGMENT::Intersects ( const BBOX_3D aBBox) const
overridevirtual
Returns
true if this object intersects aBBox.

TODO: improve

Implements OBJECT_3D.

Definition at line 411 of file round_segment_3d.cpp.

412{
414 return m_bbox.Intersects( aBBox );
415}
bool Intersects(const BBOX_3D &aBBox) const
Test if a bounding box intersects this box.
Definition: bbox_3d.cpp:218

References BBOX_3D::Intersects(), and OBJECT_3D::m_bbox.

◆ SetBoardItem()

const void OBJECT_3D::SetBoardItem ( BOARD_ITEM aBoardItem)
inlineinherited

Definition at line 55 of file object_3d.h.

55{ m_boardItem = aBoardItem; }

References OBJECT_3D::m_boardItem.

Referenced by RENDER_3D_RAYTRACE::addModels().

◆ SetColor()

void ROUND_SEGMENT::SetColor ( SFVEC3F  aObjColor)
inline

Definition at line 41 of file round_segment_3d.h.

41{ m_diffusecolor = aObjColor; }

References m_diffusecolor.

Referenced by RENDER_3D_RAYTRACE::createObject().

◆ SetMaterial()

void OBJECT_3D::SetMaterial ( const MATERIAL aMaterial)
inlineinherited

◆ SetModelTransparency()

void OBJECT_3D::SetModelTransparency ( float  aModelTransparency)
inlineinherited

Definition at line 66 of file object_3d.h.

67 {
68 m_modelTransparency = aModelTransparency;
69 }

References OBJECT_3D::m_modelTransparency.

Referenced by RENDER_3D_RAYTRACE::addModels().

Member Data Documentation

◆ m_bbox

◆ m_boardItem

BOARD_ITEM* OBJECT_3D::m_boardItem
protectedinherited

◆ m_center_left

SFVEC3F ROUND_SEGMENT::m_center_left
private

Definition at line 51 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_center_right

SFVEC3F ROUND_SEGMENT::m_center_right
private

Definition at line 52 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_centroid

◆ m_diffusecolor

SFVEC3F ROUND_SEGMENT::m_diffusecolor
private

Definition at line 61 of file round_segment_3d.h.

Referenced by GetDiffuseColor(), and SetColor().

◆ m_inv_radius

float ROUND_SEGMENT::m_inv_radius
private

Definition at line 58 of file round_segment_3d.h.

Referenced by Intersect(), and ROUND_SEGMENT().

◆ m_material

◆ m_modelTransparency

float OBJECT_3D::m_modelTransparency
protectedinherited

◆ m_obj_type

OBJECT_3D_TYPE OBJECT_3D::m_obj_type
protectedinherited

Definition at line 99 of file object_3d.h.

Referenced by OBJECT_3D::OBJECT_3D().

◆ m_plane_dir_left

SFVEC3F ROUND_SEGMENT::m_plane_dir_left
private

Definition at line 53 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_plane_dir_right

SFVEC3F ROUND_SEGMENT::m_plane_dir_right
private

Definition at line 54 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_radius

float ROUND_SEGMENT::m_radius
private

Definition at line 56 of file round_segment_3d.h.

Referenced by ROUND_SEGMENT().

◆ m_radius_squared

float ROUND_SEGMENT::m_radius_squared
private

Definition at line 57 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_seglen_over_two_squared

float ROUND_SEGMENT::m_seglen_over_two_squared
private

Definition at line 59 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().

◆ m_segment

RAYSEG2D ROUND_SEGMENT::m_segment
private

Definition at line 49 of file round_segment_3d.h.

Referenced by Intersect(), IntersectP(), and ROUND_SEGMENT().


The documentation for this class was generated from the following files: