26#include <unordered_set>
45#include <nanoflann.hpp>
85 return ( aLeft - aRight ).SquaredEuclideanNorm() <=
SEG::Square( aLimit );
99 return ( aRef - aFirst ).SquaredEuclideanNorm() < ( aRef - aSecond ).SquaredEuclideanNorm();
105 bool padOutside =
false;
109 pad->Padstack().ForEachUniqueLayer(
122 padPos.
x, padPos.
y );
132 padPos.
x, padPos.
y );
149 endpoints.emplace_back( shape->GetStart(), shape );
150 endpoints.emplace_back( shape->GetEnd(), shape );
161 return static_cast<double>(
endpoints[idx].first.x );
163 return static_cast<double>(
endpoints[idx].first.y );
166 template <
class BBOX>
173using KDTree = nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<double, PCB_SHAPE_ENDPOINTS_ADAPTOR>,
178 std::map<std::pair<VECTOR2I, VECTOR2I>,
PCB_SHAPE*>& aShapeOwners,
179 int aErrorMax,
bool aAllowUseArcsInPolygons )
196 aShapeOwners[ std::make_pair( prevPt, pt ) ] = aShape;
212 aContour.
Append( arc360, aErrorMax );
215 for(
int ii = 1; ii < aContour.
PointCount(); ++ii )
216 aShapeOwners[ std::make_pair( aContour.
CPoint( ii-1 ), aContour.
CPoint( ii ) ) ] = aShape;
218 if( !aAllowUseArcsInPolygons )
233 for(
int ii = 1; ii < aContour.
PointCount(); ++ii )
234 aShapeOwners[ std::make_pair( aContour.
CPoint( ii - 1 ), aContour.
CPoint( ii ) ) ] = aShape;
236 if( !aAllowUseArcsInPolygons )
254 aShapeOwners[ std::make_pair( prevPt, pt ) ] = aShape;
269 std::map<std::pair<VECTOR2I, VECTOR2I>,
PCB_SHAPE*>& aShapeOwners,
270 int aErrorMax,
int aChainingEpsilon,
bool aAllowUseArcsInPolygons )
279 nextPt = aShape->
GetEnd();
283 aContour.
Append( nextPt );
284 aShapeOwners[ std::make_pair( aPrevPt, nextPt ) ] = aShape;
294 if( !
close_enough( aPrevPt, pstart, aChainingEpsilon ) )
299 std::swap( pstart, pend );
305 arcChain.
Append( sarc, aErrorMax );
307 if( !aAllowUseArcsInPolygons )
310 for(
int ii = 1; ii < arcChain.
PointCount(); ++ii )
312 aShapeOwners[ std::make_pair( arcChain.
CPoint( ii - 1 ),
313 arcChain.
CPoint( ii ) ) ] = aShape;
316 aContour.
Append( arcChain );
323 bool reverse =
false;
327 nextPt = aShape->
GetEnd();
347 aShapeOwners[ std::make_pair( aPrevPt, pt ) ] = aShape;
359 aShapeOwners[ std::make_pair( aPrevPt, pt ) ] = aShape;
374 std::map<int, std::vector<int>> contourToParentIndexesMap;
376 for(
size_t ii = 0; ii < aContours.size(); ++ii )
378 if( aContours[ii].PointCount() < 1 )
381 VECTOR2I firstPt = aContours[ii].GetPoint( 0 );
382 std::vector<int> parents;
384 for(
size_t jj = 0; jj < aContours.size(); ++jj )
391 if( parentCandidate.
PointInside( firstPt, 0,
true ) )
392 parents.push_back( jj );
395 contourToParentIndexesMap[ii] = std::move( parents );
398 return contourToParentIndexesMap;
402 const std::map<
int, std::vector<int>>& aContourHierarchy,
405 const std::function<
PCB_SHAPE*(
const SEG&)>& aFetchOwner,
406 std::map<int, int>& aContourToOutlineIdxMap )
408 for(
const auto& [ contourIndex, parentIndexes ] : aContourHierarchy )
410 if( parentIndexes.size() % 2 == 0 )
413 if( !aAllowDisjoint && !aPolygons.
IsEmpty() )
418 BOARD_ITEM* b = aFetchOwner( aContours[ contourIndex ].GetSegment( 0 ) );
422 (*aErrorHandler)(
_(
"(multiple board outlines not supported)" ), a, b,
423 aContours[ contourIndex ].GetPoint( 0 ) );
429 aPolygons.
AddOutline( aContours[ contourIndex ] );
430 aContourToOutlineIdxMap[ contourIndex ] = aPolygons.
OutlineCount() - 1;
437 const std::map<
int, std::vector<int>>& aContourHierarchy,
438 const std::map<int, int>& aContourToOutlineIdxMap,
441 for(
const auto& [ contourIndex, parentIndexes ] : aContourHierarchy )
443 if( parentIndexes.size() % 2 == 1 )
448 for(
int parentContourIdx : parentIndexes )
450 if( aContourHierarchy.at( parentContourIdx ).size() == parentIndexes.size() - 1 )
452 int outlineIdx = aContourToOutlineIdxMap.at( parentContourIdx );
453 aPolygons.
AddHole( hole, outlineIdx );
463 const std::function<
PCB_SHAPE*(
const SEG&)>& aFetchOwner )
465 bool selfIntersecting =
false;
466 std::vector<SEG> segments;
474 for(
int jj = 0; jj < aPolygons.
HoleCount( ii ); ++jj )
481 segments.reserve( total );
488 std::swap( segment.
A, segment.
B );
490 segments.push_back( segment );
493 std::sort( segments.begin(), segments.end(),
494 [](
const SEG& a,
const SEG& b )
497 return LexicographicalCompare( a.A, b.A ) < 0;
498 return LexicographicalCompare( a.B, b.B ) < 0;
501 for(
size_t i = 0; i < segments.size(); ++i )
503 const SEG& seg1 = segments[i];
505 for(
size_t j = i + 1; j < segments.size(); ++j )
507 const SEG& seg2 = segments[j];
509 if( seg2.
A > seg1.
B )
512 if( seg1 == seg2 || ( seg1.
A == seg2.
B && seg1.
B == seg2.
A ) )
518 (*aErrorHandler)(
_(
"(self-intersecting)" ), a, b, seg1.
A );
520 selfIntersecting =
true;
528 (*aErrorHandler)(
_(
"(self-intersecting)" ), a, b, *pt );
530 selfIntersecting =
true;
535 return !selfIntersecting;
542 const double query_pt[2] = {
static_cast<double>( aPoint.
x ),
static_cast<double>( aPoint.
y ) };
546 kdTree.knnSearch( query_pt, 2, indices, distances );
548 if( distances[0] == std::numeric_limits<double>::max() )
553 double closest_dist_sq = aChainingEpsilon * aChainingEpsilon;
555 for(
size_t i = 0; i < 2; ++i )
557 if( distances[i] == std::numeric_limits<double>::max() )
562 if( candidate == aShape )
565 if( distances[i] < closest_dist_sq )
567 closest_dist_sq = distances[i];
568 closest_graphic = candidate;
572 return closest_graphic;
576 int aErrorMax,
int aChainingEpsilon,
bool aAllowDisjoint,
580 if( aShapeList.size() == 0 )
583 bool selfIntersecting =
false;
586 std::set<PCB_SHAPE*> startCandidates( aShapeList.begin(), aShapeList.end() );
590 KDTree kdTree( 2, adaptor );
593 std::map<std::pair<VECTOR2I, VECTOR2I>,
PCB_SHAPE*> shapeOwners;
598 auto it = shapeOwners.find( std::make_pair( seg.A, seg.B ) );
599 return it == shapeOwners.end() ? nullptr : it->second;
602 std::set<std::pair<PCB_SHAPE*, PCB_SHAPE*>> reportedGaps;
603 std::vector<SHAPE_LINE_CHAIN> contours;
604 contours.reserve( startCandidates.size() );
606 for(
PCB_SHAPE* shape : startCandidates )
610 while( startCandidates.size() )
612 graphic = *startCandidates.begin();
614 aCleaner.insert( graphic );
615 startCandidates.erase( startCandidates.begin() );
617 contours.emplace_back();
625 processClosedShape( graphic, currContour, shapeOwners, aErrorMax, aAllowUseArcsInPolygons );
630 std::deque<PCB_SHAPE*>
chain;
631 chain.push_back( graphic );
637 auto extendChain = [&](
bool forward )
640 VECTOR2I prev = forward ? backPt : frontPt;
649 aCleaner.insert(
next );
650 startCandidates.erase(
next );
658 prev =
next->GetEnd();
660 prev =
next->GetStart();
669 VECTOR2I chainPt = forward ? frontPt : backPt;
678 ( *aErrorHandler )(
_(
"(self-intersecting)" ), curr,
next, prev );
680 selfIntersecting =
true;
696 extendChain(
false );
702 if(
chain.size() > 1 )
708 startPt = first->
GetEnd();
717 currContour.
Append( startPt );
723 aErrorMax, aChainingEpsilon, aAllowUseArcsInPolygons );
740 arcChain.
Append( sarc, aErrorMax );
742 if( !aAllowUseArcsInPolygons )
745 for(
int ii = 1; ii < arcChain.
PointCount(); ++ii )
746 shapeOwners[std::make_pair( arcChain.
CPoint( ii - 1 ), arcChain.
CPoint( ii ) )] = owner;
749 currContour.
Append( arcChain );
755 shapeOwners[ std::make_pair( currContour.
CPoints()[currContour.
PointCount() - 2],
764 auto report_gap = [&](
const VECTOR2I& pt )
769 const double query_pt[2] = {
static_cast<double>( pt.x ),
static_cast<double>( pt.y ) };
770 uint32_t indices[2] = { 0, 0 };
774 kdTree.knnSearch( query_pt, 2, indices, dists );
780 auto key = std::minmax( shapeA, shapeB );
782 if( !reportedGaps.insert( key ).second )
791 if( effectiveShapeA && effectiveShapeB
792 && effectiveShapeA->NearestPoints( effectiveShapeB.get(), ptA, ptB ) )
794 midpoint = ( ptA + ptB ) / 2;
797 ( *aErrorHandler )(
_(
"(not a closed shape)" ), shapeA, shapeB, midpoint );
800 report_gap( currContour.
CPoint( 0 ) );
809 if( !contour.IsClosed() )
814 for(
size_t ii = 0; ii < contours.size(); ++ii )
826 std::map<int, int> contourToOutlineIdxMap;
828 aErrorHandler, fetchOwner, contourToOutlineIdxMap ) )
834 addHolesToPolygon( contours, contourHierarchy, contourToOutlineIdxMap, aPolygons );
842 int aErrorMax,
int aChainingEpsilon,
bool aAllowDisjoint,
848 aAllowDisjoint, aErrorHandler, aAllowUseArcsInPolygons,
858 int min_dist = std::max( 0, aMinDist );
863 std::vector<PCB_SHAPE*> shapeList;
865 for(
int ii = 0; ii < items.
GetCount(); ii++ )
870 shapeList.push_back( seg );
876 switch( shape->GetShape() )
880 VECTOR2I seg = shape->GetEnd() - shape->GetStart();
883 if( dim <= min_dist )
889 (*aErrorHandler)( wxString::Format(
_(
"(rectangle has null or very small "
890 "size: %d nm)" ), dim ),
891 shape,
nullptr, shape->GetStart() );
899 int r = shape->GetRadius();
907 (*aErrorHandler)( wxString::Format(
_(
"(circle has null or very small "
908 "radius: %d nm)" ), r ),
909 shape,
nullptr, shape->GetStart() );
917 VECTOR2I seg = shape->GetEnd() - shape->GetStart();
920 if( dim <= min_dist )
926 (*aErrorHandler)( wxString::Format(
_(
"(segment has null or very small "
927 "length: %d nm)" ), dim ),
928 shape,
nullptr, shape->GetStart() );
938 VECTOR2I arcMiddle = shape->GetArcMid();
939 VECTOR2I seg1 = arcMiddle - shape->GetStart();
940 VECTOR2I seg2 = shape->GetEnd() - arcMiddle;
943 if( dim <= min_dist )
949 (*aErrorHandler)( wxString::Format(
_(
"(arc has null or very small size: "
951 shape,
nullptr, shape->GetStart() );
974 int aChainingEpsilon,
bool aInferOutlineIfNecessary,
979 bool success =
false;
986 for(
int ii = 0; ii < items.
GetCount(); ++ii )
994 std::vector<PCB_SHAPE*> fpSegList;
996 for(
int ii = 0; ii < fpItems.
GetCount(); ii++ )
1001 fpSegList.push_back( fpSeg );
1004 if( !fpSegList.empty() )
1011 aAllowUseArcsInPolygons,
1021 fpHoles.
Append( fpOutlines );
1027 for(
int ii = 0; ii < fpItems.
GetCount(); ++ii )
1034 std::vector<PCB_SHAPE*> segList;
1036 for(
int ii = 0; ii < items.
GetCount(); ii++ )
1045 segList.push_back( seg );
1048 if( segList.size() )
1051 aErrorHandler, aAllowUseArcsInPolygons, cleaner );
1054 if( ( !success || !aOutlines.
OutlineCount() ) && aInferOutlineIfNecessary )
1077 aOutlines.
Append( corner );
1083 aOutlines.
Append( corner );
1086 if( aAllowUseArcsInPolygons )
1143 chain.SetClosed(
true );
1151 int aOutlineNum = 0 )
1153 int minDistance = -1;
1158 auto seg = it.Get();
1159 int dis = seg.Distance( aEndPoint );
1161 if( minDistance < 0 || ( dis < minDistance ) )
1164 projPoint = seg.NearestPoint( aEndPoint );
1180 bool foundA =
false;
1181 bool foundB =
false;
1199 if( foundA && foundB )
1202 if( foundSegs == 0 )
1206 seg.
A.
x, seg.
A.
y, seg.
B.
x, seg.
B.
y );
1214 seg.
A.
x, seg.
A.
y, seg.
B.
x, seg.
B.
y );
1240 bool success =
false;
1248 std::vector<PCB_SHAPE*> segList;
1250 for(
int ii = 0; ii < items.
GetCount(); ii++ )
1252 if( items[ii]->GetLayer() ==
Edge_Cuts )
1253 segList.push_back(
static_cast<PCB_SHAPE*
>( items[ii] ) );
1256 if( !segList.empty() )
1259 aErrorHandler,
false, cleaner );
1283 for(
int j = 0; j < outlines.
HoleCount( i ); j++ )
1288 aOutlines.
AddHole( hole, -1 );
1296 aOutlines = std::move( outlines );
1314 std::vector<SHAPE_LINE_CHAIN> closedChains;
1315 std::vector<SHAPE_LINE_CHAIN> openChains;
1319 openChains.push_back( outlines.
Outline( 0 ) );
1321 for(
int j = 0; j < outlines.
HoleCount( 0 ); j++ )
1328 closedChains.push_back( hole );
1333 openChains.push_back( hole );
1345 chain.SetClosed(
false );
1356 if(
chain.SegmentCount() == 0 )
1360 aOutlines = std::move( bbox );
1363 else if(
chain.SegmentCount() == 1 )
1367 wxLogTrace(
traceBoardOutline, wxT(
"Only 1 line segment in provided outline" ) );
1369 startSeg =
chain.Segment( 0 );
1377 if( inter0 && inter2 && !inter1 && !inter3 )
1380 wxLogTrace(
traceBoardOutline, wxT(
"Segment intersects only vertical bbox sides" ) );
1396 else if( inter1 && inter3 && !inter0 && !inter2 )
1399 wxLogTrace(
traceBoardOutline, wxT(
"Segment intersects only horizontal bbox sides" ) );
1418 wxLogTrace(
traceBoardOutline, wxT(
"Segment intersects two perpendicular bbox sides" ) );
1446 else if( hit1 && hit2 )
1465 else if( hit2 && hit3 )
1511 aOutlines = std::move( bbox );
1528 aOutlines = std::move( poly2 );
1533 aOutlines = std::move( poly1 );
1540 aOutlines.
AddHole( closedChain, -1 );
constexpr EDA_IU_SCALE pcbIUScale
A base class for any item which can be embedded within the BOARD container class, and therefore insta...
Information pertinent to a Pcbnew printed circuit board.
const BOX2I GetBoardEdgesBoundingBox() const
Return the board bounding box calculated using exclusively the board edges (graphics on Edge....
const BOX2I GetBoundingBox() const override
Return the orthogonal bounding box of this object for display purposes.
FOOTPRINT * GetFirstFootprint() const
Get the first footprint on the board or nullptr.
BOX2I ComputeBoundingBox(bool aBoardEdgesOnly=false) const
Calculate the bounding box containing all board items (or board edge segments).
const FOOTPRINTS & Footprints() const
constexpr BOX2< Vec > & Inflate(coord_type dx, coord_type dy)
Inflates the rectangle horizontally by dx and vertically by dy.
constexpr const Vec GetEnd() const
constexpr size_type GetWidth() const
constexpr size_type GetHeight() const
constexpr const Vec & GetOrigin() const
constexpr bool IsValid() const
int GetCount() const
Return the number of objects in the list.
A base class for most all the KiCad significant classes used in schematics and boards.
void SetFlags(EDA_ITEM_FLAGS aMask)
void ClearFlags(EDA_ITEM_FLAGS aMask=EDA_ITEM_ALL_FLAGS)
EDA_ITEM_FLAGS GetFlags() const
int GetRectangleWidth() const
SHAPE_POLY_SET & GetPolyShape()
void RebuildBezierToSegmentsPointsList(int aMaxError)
Rebuild the m_bezierPoints vertex list that approximate the Bezier curve by a list of segments.
const VECTOR2I & GetEnd() const
Return the ending point of the graphic.
const VECTOR2I & GetStart() const
Return the starting point of the graphic.
std::vector< VECTOR2I > GetRectCorners() const
const std::vector< VECTOR2I > & GetBezierPoints() const
int GetRectangleHeight() const
int GetCornerRadius() const
VECTOR2I GetArcMid() const
VECTOR2I GetCenter() const override
This defaults to the center of the bounding box if not overridden.
int GetWidth() const override
std::shared_ptr< SHAPE > GetEffectiveShape(PCB_LAYER_ID aLayer=UNDEFINED_LAYER, FLASHING aFlash=FLASHING::DEFAULT) const override
Make a set of SHAPE objects representing the PCB_SHAPE.
PCB_LAYER_ID GetLayer() const override
Return the primary layer this item is on.
Collect all BOARD_ITEM objects of a given set of KICAD_T type(s).
void Collect(BOARD_ITEM *aBoard, const std::vector< KICAD_T > &aTypes)
Collect BOARD_ITEM objects using this class's Inspector method, which does the collection.
A round rectangle shape, based on a rectangle and a radius.
void TransformToPolygon(SHAPE_POLY_SET &aBuffer, int aMaxError) const
Get the polygonal representation of the roundrect.
EDA_ITEM_FLAGS m_flagsToClear
SCOPED_FLAGS_CLEANER(const EDA_ITEM_FLAGS &aFlagsToClear)
OPT_VECTOR2I Intersect(const SEG &aSeg, bool aIgnoreEndpoints=false, bool aLines=false) const
Compute intersection point of segment (this) with segment aSeg.
static SEG::ecoord Square(int a)
OPT_VECTOR2I IntersectLines(const SEG &aSeg) const
Compute the intersection point of lines passing through ends of (this) and aSeg.
bool Contains(const SEG &aSeg) const
const VECTOR2I & GetArcMid() const
const VECTOR2I & GetP0() const
bool PointInside(const VECTOR2I &aPt, int aAccuracy=0, bool aUseBBoxCache=false) const override
Check if point aP lies inside a closed shape.
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
const SHAPE_ARC & Arc(size_t aArc) const
bool IsClosed() const override
virtual const VECTOR2I GetPoint(int aIndex) const override
void SetPoint(int aIndex, const VECTOR2I &aPos)
Move a point to a specific location.
void GenerateBBoxCache() const
void SetClosed(bool aClosed)
Mark the line chain as closed (i.e.
int PointCount() const
Return the number of points (vertices) in this line chain.
bool IsArcEnd(size_t aIndex) const
void ClearArcs()
Remove all arc references in the line chain, resulting in a chain formed only of straight segments.
ssize_t ArcIndex(size_t aSegment) const
Return the arc index for the given segment index.
void SetWidth(int aWidth) override
Set the width of all segments in the chain.
SEG Segment(int aIndex) const
Return a copy of the aIndex-th segment in the line chain.
BOX2I * GetCachedBBox() const override
void Append(int aX, int aY, bool aAllowDuplication=false)
Append a new point at the end of the line chain.
virtual const SEG GetSegment(int aIndex) const override
const VECTOR2I & CPoint(int aIndex) const
Return a reference to a given point in the line chain.
int SegmentCount() const
Return the number of segments in this line chain.
const VECTOR2I & CLastPoint() const
Return the last point in the line chain.
const SEG CSegment(int aIndex) const
Return a constant copy of the aIndex segment in the line chain.
void RemoveShape(int aPointIndex)
Remove the shape at the given index from the line chain.
const std::vector< VECTOR2I > & CPoints() const
Represent a set of closed polygons.
void RemoveAllContours()
Remove all outlines & holes (clears) the polygon set.
void ClearArcs()
Removes all arc references from all the outlines and holes in the polyset.
int AddOutline(const SHAPE_LINE_CHAIN &aOutline)
Adds a new outline to the set and returns its index.
bool IsEmpty() const
Return true if the set is empty (no polygons at all)
CONST_ITERATOR CIterate(int aFirst, int aLast, bool aIterateHoles=false) const
int HoleCount(int aOutline) const
Returns the number of holes in a given outline.
int Append(int x, int y, int aOutline=-1, int aHole=-1, bool aAllowDuplication=false)
Appends a vertex at the end of the given outline/hole (default: the last outline)
int AddHole(const SHAPE_LINE_CHAIN &aHole, int aOutline=-1)
Adds a new hole to the given outline (default: last) and returns its index.
SHAPE_LINE_CHAIN & Outline(int aIndex)
Return the reference to aIndex-th outline in the set.
SHAPE_LINE_CHAIN & Hole(int aOutline, int aHole)
Return the reference to aHole-th hole in the aIndex-th outline.
int NewOutline()
Creates a new empty polygon in the set and returns its index.
void BooleanIntersection(const SHAPE_POLY_SET &b)
Perform boolean polyset intersection.
CONST_SEGMENT_ITERATOR CIterateSegments(int aFirst, int aLast, bool aIterateHoles=false) const
Return an iterator object, for iterating between aFirst and aLast outline, with or without holes (def...
int OutlineCount() const
Return the number of outlines in the set.
SHAPE_POLY_SET CloneDropTriangulation() const
void BooleanSubtract(const SHAPE_POLY_SET &b)
Perform boolean polyset difference.
SEGMENT_ITERATOR IterateSegmentsWithHoles()
Returns an iterator object, for all outlines in the set (with holes)
T EuclideanNorm() const
Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
VECTOR2I projectPointOnSegment(const VECTOR2I &aEndPoint, const SHAPE_POLY_SET &aOutline, int aOutlineNum=0)
bool BuildBoardPolygonOutlines(BOARD *aBoard, SHAPE_POLY_SET &aOutlines, int aErrorMax, int aChainingEpsilon, bool aInferOutlineIfNecessary, OUTLINE_ERROR_HANDLER *aErrorHandler, bool aAllowUseArcsInPolygons)
Extract the board outlines and build a closed polygon from lines, arcs and circle items on edge cut l...
static bool isCopperOutside(const FOOTPRINT *aFootprint, SHAPE_POLY_SET &aShape)
static void processClosedShape(PCB_SHAPE *aShape, SHAPE_LINE_CHAIN &aContour, std::map< std::pair< VECTOR2I, VECTOR2I >, PCB_SHAPE * > &aShapeOwners, int aErrorMax, bool aAllowUseArcsInPolygons)
nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Simple_Adaptor< double, PCB_SHAPE_ENDPOINTS_ADAPTOR >, PCB_SHAPE_ENDPOINTS_ADAPTOR, 2 > KDTree
bool ConvertOutlineToPolygon(std::vector< PCB_SHAPE * > &aShapeList, SHAPE_POLY_SET &aPolygons, int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint, OUTLINE_ERROR_HANDLER *aErrorHandler, bool aAllowUseArcsInPolygons)
Build a polygon set with holes from a PCB_SHAPE list.
bool TestBoardOutlinesGraphicItems(BOARD *aBoard, int aMinDist, OUTLINE_ERROR_HANDLER *aErrorHandler)
Test a board graphic items on edge cut layer for validity.
void buildBoardBoundingBoxPoly(const BOARD *aBoard, SHAPE_POLY_SET &aOutline)
Get the complete bounding box of the board (including all items).
int findEndSegments(SHAPE_LINE_CHAIN &aChain, SEG &aStartSeg, SEG &aEndSeg)
static bool close_enough(VECTOR2I aLeft, VECTOR2I aRight, unsigned aLimit)
Local and tunable method of qualifying the proximity of two points.
static PCB_SHAPE * findNext(PCB_SHAPE *aShape, const VECTOR2I &aPoint, const KDTree &kdTree, const PCB_SHAPE_ENDPOINTS_ADAPTOR &adaptor, double aChainingEpsilon)
static bool checkSelfIntersections(SHAPE_POLY_SET &aPolygons, OUTLINE_ERROR_HANDLER *aErrorHandler, const std::function< PCB_SHAPE *(const SEG &)> &aFetchOwner)
static std::map< int, std::vector< int > > buildContourHierarchy(const std::vector< SHAPE_LINE_CHAIN > &aContours)
static void addHolesToPolygon(const std::vector< SHAPE_LINE_CHAIN > &aContours, const std::map< int, std::vector< int > > &aContourHierarchy, const std::map< int, int > &aContourToOutlineIdxMap, SHAPE_POLY_SET &aPolygons)
static bool closer_to_first(VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond)
Local method which qualifies whether the start or end point of a segment is closest to a point.
bool BuildFootprintPolygonOutlines(BOARD *aBoard, SHAPE_POLY_SET &aOutlines, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER *aErrorHandler)
Extract a board outline for a footprint view.
static void processShapeSegment(PCB_SHAPE *aShape, SHAPE_LINE_CHAIN &aContour, VECTOR2I &aPrevPt, std::map< std::pair< VECTOR2I, VECTOR2I >, PCB_SHAPE * > &aShapeOwners, int aErrorMax, int aChainingEpsilon, bool aAllowUseArcsInPolygons)
static bool addOutlinesToPolygon(const std::vector< SHAPE_LINE_CHAIN > &aContours, const std::map< int, std::vector< int > > &aContourHierarchy, SHAPE_POLY_SET &aPolygons, bool aAllowDisjoint, OUTLINE_ERROR_HANDLER *aErrorHandler, const std::function< PCB_SHAPE *(const SEG &)> &aFetchOwner, std::map< int, int > &aContourToOutlineIdxMap)
bool doConvertOutlineToPolygon(std::vector< PCB_SHAPE * > &aShapeList, SHAPE_POLY_SET &aPolygons, int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint, OUTLINE_ERROR_HANDLER *aErrorHandler, bool aAllowUseArcsInPolygons, SCOPED_FLAGS_CLEANER &aCleaner)
const std::function< void(const wxString &msg, BOARD_ITEM *itemA, BOARD_ITEM *itemB, const VECTOR2I &pt)> OUTLINE_ERROR_HANDLER
static constexpr EDA_ANGLE ANGLE_360
#define SKIP_STRUCT
flag indicating that the structure should be ignored
std::uint32_t EDA_ITEM_FLAGS
@ RECTANGLE
Use RECTANGLE instead of RECT to avoid collision in a Windows header.
a few functions useful in geometry calculations.
const wxChar * traceBoardOutline
Flag to enable debug tracing for the board outline creation.
PCB_LAYER_ID
A quick note on layer IDs:
This file contains miscellaneous commonly used macros and functions.
#define UNIMPLEMENTED_FOR(type)
std::optional< VECTOR2I > OPT_VECTOR2I
std::vector< std::pair< VECTOR2I, PCB_SHAPE * > > endpoints
bool kdtree_get_bbox(BBOX &) const
PCB_SHAPE_ENDPOINTS_ADAPTOR(const std::vector< PCB_SHAPE * > &shapes)
size_t kdtree_get_point_count() const
double kdtree_get_pt(const size_t idx, const size_t dim) const
const SHAPE_LINE_CHAIN chain
@ PCB_SHAPE_T
class PCB_SHAPE, a segment not on copper layers
VECTOR2< int32_t > VECTOR2I
constexpr int LexicographicalCompare(const VECTOR2< T > &aA, const VECTOR2< T > &aB)