KiCad PCB EDA Suite
Loading...
Searching...
No Matches
pns_meander_placer.cpp
Go to the documentation of this file.
1/*
2 * KiRouter - a push-and-(sometimes-)shove PCB router
3 *
4 * Copyright (C) 2013-2015 CERN
5 * Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
6 * Author: Tomasz Wlostowski <[email protected]>
7 *
8 * This program is free software: you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation, either version 3 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include "pns_debug_decorator.h"
23#include "pns_itemset.h"
24#include "pns_meander_placer.h"
25#include "pns_node.h"
26#include "pns_router.h"
27#include "pns_solid.h"
28#include "pns_topology.h"
29
30namespace PNS {
31
33 MEANDER_PLACER_BASE( aRouter )
34{
35 m_currentNode = nullptr;
36
37 // Init temporary variables (do not leave uninitialized members)
38 m_initialSegment = nullptr;
39 m_lastLength = 0;
42}
43
44
46{
47}
48
49
50NODE* MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const
51{
52 if( !m_currentNode )
53 return m_world;
54
55 return m_currentNode;
56}
57
58
59bool MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem )
60{
61 if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T ) )
62 {
63 Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) );
64 return false;
65 }
66
67 m_initialSegment = static_cast<LINKED_ITEM*>( aStartItem );
68 m_currentNode = nullptr;
70
71 m_world = Router()->GetWorld()->Branch();
73
74 TOPOLOGY topo( m_world );
76
78
79 if( m_startPad_n )
81
82 if( m_endPad_n )
84
86
88 m_currentEnd = VECTOR2I( 0, 0 );
89
90 return true;
91}
92
93
94long long int MEANDER_PLACER::origPathLength() const
95{
97}
98
99
100bool MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem )
101{
104}
105
106
107bool MEANDER_PLACER::doMove( const VECTOR2I& aP, ITEM* aEndItem, long long int aTargetLength,
108 long long int aTargetMin, long long int aTargetMax )
109{
110 if( m_currentStart == aP )
111 return false;
112
113 if( m_currentNode )
114 delete m_currentNode;
115
117
118 SHAPE_LINE_CHAIN pre, tuned, post;
119
120 m_originLine.CLine().Split( m_currentStart, aP, pre, tuned, post );
121
122 m_result = MEANDERED_LINE( this, false );
125
126 for( int i = 0; i < tuned.SegmentCount(); i++ )
127 {
128 if( tuned.IsArcSegment( i ) )
129 {
130 ssize_t arcIndex = tuned.ArcIndex( i );
131 m_result.AddArc( tuned.Arc( arcIndex ) );
132 i = tuned.NextShape( i );
133
134 // NextShape will return -1 if last shape
135 if( i < 0 )
136 i = tuned.SegmentCount();
137
138 continue;
139 }
140
141 bool side = false;
142 const SEG s = tuned.CSegment( i );
143
144 if( m_settings.m_initialSide == 0 )
145 side = s.Side( aP ) < 0;
146 else
147 side = m_settings.m_initialSide < 0;
148
149 m_result.AddCorner( s.A );
150 m_result.MeanderSegment( s, side );
151 m_result.AddCorner( s.B );
152 }
153
154 long long int lineLen = origPathLength();
155
156 m_lastLength = lineLen;
158
159 if( lineLen > m_settings.m_targetLength.Max() )
160 {
162 }
163 else
164 {
165 m_lastLength = lineLen - tuned.Length();
166 tuneLineLength( m_result, aTargetLength - lineLen );
167 }
168
169 for( const ITEM* item : m_tunedPath.CItems() )
170 {
171 if( const LINE* l = dyn_cast<const LINE*>( item ) )
172 {
173 PNS_DBG( Dbg(), AddItem, l, BLUE, 30000, wxT( "tuned-line" ) );
174
175 m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 );
176 }
177 }
178
179 if( m_lastStatus != TOO_LONG )
180 {
181 tuned.Clear();
182
183 for( MEANDER_SHAPE* m : m_result.Meanders() )
184 {
185 if( m->Type() != MT_EMPTY )
186 {
187 tuned.Append ( m->CLine( 0 ) );
188 }
189 }
190
191 m_lastLength += tuned.Length();
192
193 if( m_lastLength > aTargetMax )
195 else if( m_lastLength < aTargetMin )
197 else
199 }
200
202
204 {
205 pre.Simplify();
206 tuned.Simplify();
207 post.Simplify();
208
209 m_finalShape.Append( pre );
210 m_finalShape.Append( tuned );
211 m_finalShape.Append( post );
212 }
213 else
214 {
215 m_finalShape.Append( pre );
216 m_finalShape.Append( tuned );
217 m_finalShape.Append( post );
219 }
220
221 return true;
222}
223
224
225bool MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish )
226{
227 if( !m_currentNode )
228 return false;
229
233
234 return true;
235}
236
237
239{
241 return true;
242}
243
244
246{
247 return m_currentTrace.SegmentCount() > 0;
248}
249
250
252{
253 if( m_currentNode )
255
256 m_currentNode = nullptr;
257 return true;
258}
259
260
262{
263 LINE l( m_originLine, aShape->CLine( 0 ) );
264
265 if( m_currentNode->CheckColliding( &l ) )
266 return false;
267
268 int w = aShape->Width();
269 int clearance = w + m_settings.m_spacing;
270
271 return m_result.CheckSelfIntersections( aShape, clearance );
272}
273
274
276{
278 return ITEM_SET( &m_currentTrace );
279}
280
282{
283 return m_tunedPath;
284}
285
287{
288 return m_currentStart;
289}
290
292{
293 return m_currentEnd;
294}
295
297{
298 return m_initialSegment->Layers().Start();
299}
300
301
302long long int MEANDER_PLACER::TuningResult() const
303{
304 if( m_lastLength )
305 return m_lastLength;
306 else
307 return origPathLength();
308}
309
310
312{
313 return m_lastStatus;
314}
315
316}
int Start() const
Definition: pns_layerset.h:82
T Min() const
Definition: minoptmax.h:33
T Max() const
Definition: minoptmax.h:34
T Opt() const
Definition: minoptmax.h:35
ROUTER * Router() const
Return current router settings.
Definition: pns_algo_base.h:54
ROUTER * m_router
Definition: pns_algo_base.h:87
DEBUG_DECORATOR * Dbg() const
Definition: pns_algo_base.h:78
const std::vector< ITEM * > & CItems() const
Definition: pns_itemset.h:88
Base class for PNS router board items.
Definition: pns_item.h:97
@ SEGMENT_T
Definition: pns_item.h:105
const LAYER_RANGE & Layers() const
Definition: pns_item.h:195
bool OfKind(int aKindMask) const
Definition: pns_item.h:174
Represents a track on a PCB, connecting two non-trivial joints (that is, vias, pads,...
Definition: pns_line.h:61
const SHAPE_LINE_CHAIN & CLine() const
Definition: pns_line.h:136
int SegmentCount() const
Definition: pns_line.h:138
int Width() const
Return true if the line is geometrically identical as line aOther.
Definition: pns_line.h:155
Represent a set of meanders fitted over a single or two lines.
Definition: pns_meander.h:470
void SetBaselineOffset(int aOffset)
Set the parallel offset between the base segment and the meandered line.
Definition: pns_meander.h:565
void SetWidth(int aWidth)
Set the line width.
Definition: pns_meander.h:550
void AddCorner(const VECTOR2I &aA, const VECTOR2I &aB=VECTOR2I(0, 0))
Create a dummy meander shape representing a line corner.
void MeanderSegment(const SEG &aSeg, bool aSide, int aBaseIndex=0)
Fit maximum amplitude meanders on a given segment and adds to the current line.
Definition: pns_meander.cpp:43
void AddArc(const SHAPE_ARC &aArc1, const SHAPE_ARC &aArc2=SHAPE_ARC())
Create a dummy meander shape representing an arc corner.
bool CheckSelfIntersections(MEANDER_SHAPE *aShape, int aClearance)
Check if the given shape is intersecting with any other meander in the current line.
std::vector< MEANDER_SHAPE * > & Meanders()
Definition: pns_meander.h:573
Base class for Single trace & Differential pair meandering tools, as both of them share a lot of code...
void tuneLineLength(MEANDERED_LINE &aTuned, long long int aElongation)
Take a set of meanders in aTuned and tunes their length to extend the original line length by aElonga...
TUNING_STATUS
< Result of the length tuning operation
int m_currentWidth
Meander settings.
MEANDER_SETTINGS m_settings
The current end point.
NODE * m_world
Width of the meandered trace(s).
VECTOR2I getSnappedStartPoint(LINKED_ITEM *aStartItem, VECTOR2I aStartPoint)
long long int lineLength(const ITEM_SET &aLine, const SOLID *aStartPad, const SOLID *aEndPad) const
Calculate the total length of the line represented by an item set (tracks and vias)
virtual bool FixRoute(const VECTOR2I &aP, ITEM *aEndItem, bool aForceFinish=false) override
Function FixRoute()
bool doMove(const VECTOR2I &aP, ITEM *aEndItem, long long int aTargetLength, long long int aTargetMin, long long int aTargetMax)
TUNING_STATUS m_lastStatus
virtual bool Move(const VECTOR2I &aP, ITEM *aEndItem) override
Function Move()
virtual long long int origPathLength() const
current routing start point (end of tail, beginning of head)
int CurrentLayer() const override
Function CurrentLayer()
const VECTOR2I & CurrentEnd() const override
Function CurrentEnd()
const VECTOR2I & CurrentStart() const override
Function CurrentStart()
bool AbortPlacement() override
bool HasPlacedAnything() const override
NODE * CurrentNode(bool aLoopsRemoved=false) const override
Function CurrentNode()
LINKED_ITEM * m_initialSegment
Total length added by pad to die size.
SHAPE_LINE_CHAIN m_finalShape
const ITEM_SET TunedPath() override
const ITEM_SET Traces() override
Function Traces()
MEANDER_PLACER(ROUTER *aRouter)
bool CheckFit(MEANDER_SHAPE *aShape) override
Checks if it's OK to place the shape aShape (i.e.
VECTOR2I m_currentStart
Current world state.
TUNING_STATUS TuningStatus() const override
Return the tuning status (too short, too long, etc.) of the trace(s) being tuned.
virtual bool Start(const VECTOR2I &aP, ITEM *aStartItem) override
Function Start()
long long int TuningResult() const override
Return the resultant length or skew of the tuned traces.
bool CommitPlacement() override
long long int m_lastLength
MEANDER_SIDE m_initialSide
Allowable tuning error.
Definition: pns_meander.h:160
MINOPTMAX< long long int > m_targetLength
Target skew value for diff pair de-skewing.
Definition: pns_meander.h:143
int m_spacing
Amplitude/spacing adjustment step.
Definition: pns_meander.h:134
The geometry of a single meander.
Definition: pns_meander.h:173
int Width() const
Definition: pns_meander.h:355
const SHAPE_LINE_CHAIN & CLine(int aShape) const
Definition: pns_meander.h:295
Keep the router "world" - i.e.
Definition: pns_node.h:206
NODE * Branch()
Create a lightweight copy (called branch) of self that tracks the changes (added/removed items) wrs t...
Definition: pns_node.cpp:143
OPT_OBSTACLE CheckColliding(const ITEM *aItem, int aKindMask=ITEM::ANY_T)
Check if the item collides with anything else in the world, and if found, returns the obstacle.
Definition: pns_node.cpp:410
void KillChildren()
Definition: pns_node.cpp:1490
bool Add(std::unique_ptr< SEGMENT > &&aSegment, bool aAllowRedundant=false)
Add an item to the current node.
Definition: pns_node.cpp:657
void Remove(ARC *aArc)
Remove an item from this branch.
Definition: pns_node.cpp:878
const LINE AssembleLine(LINKED_ITEM *aSeg, int *aOriginSegmentIndex=nullptr, bool aStopAtLockedJoints=false, bool aFollowLockedSegments=false)
Follow the joint map to assemble a line connecting two non-trivial joints starting from segment aSeg.
Definition: pns_node.cpp:1008
virtual void DisplayPathLine(const SHAPE_LINE_CHAIN &aLine, int aImportance)=0
ROUTER_IFACE * GetInterface() const
Definition: pns_router.h:217
void SetFailureReason(const wxString &aReason)
Definition: pns_router.h:212
void CommitRouting()
Definition: pns_router.cpp:909
NODE * GetWorld() const
Definition: pns_router.h:163
int GetPadToDie() const
Definition: pns_solid.h:107
const ITEM_SET AssembleTuningPath(ITEM *aStart, SOLID **aStartPad=nullptr, SOLID **aEndPad=nullptr)
Like AssembleTrivialPath, but follows the track length algorithm, which discards segments that are fu...
Definition: seg.h:42
VECTOR2I A
Definition: seg.h:49
VECTOR2I B
Definition: seg.h:50
int Side(const VECTOR2I &aP) const
Determine on which side of directed line passing via segment ends point aP lies.
Definition: seg.h:143
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
const SHAPE_ARC & Arc(size_t aArc) const
SHAPE_LINE_CHAIN & Simplify(bool aRemoveColinear=true)
Simplify the line chain by removing colinear adjacent segments and duplicate vertices.
int Split(const VECTOR2I &aP, bool aExact=false)
Insert the point aP belonging to one of the our segments, splitting the adjacent segment in two.
int NextShape(int aPointIndex, bool aForwards=true) const
Return the vertex index of the next shape in the chain, or -1 if aPointIndex is the last shape.
ssize_t ArcIndex(size_t aSegment) const
Return the arc index for the given segment index.
void Clear()
Remove all points from the line chain.
void Append(int aX, int aY, bool aAllowDuplication=false)
Append a new point at the end of the line chain.
int SegmentCount() const
Return the number of segments in this line chain.
const SEG CSegment(int aIndex) const
Return a constant copy of the aIndex segment in the line chain.
bool IsArcSegment(size_t aSegment) const
long long int Length() const
Return length of the line chain in Euclidean metric.
@ BLUE
Definition: color4d.h:56
#define _(s)
Push and Shove diff pair dimensions (gap) settings dialog.
@ MT_EMPTY
Definition: pns_meander.h:47
#define PNS_DBG(dbg, method,...)
VECTOR2< int > VECTOR2I
Definition: vector2d.h:588