23#ifndef __PNS_MEANDER_H
24#define __PNS_MEANDER_H
34class MEANDER_PLACER_BASE;
347 void miter(
int aRadius,
bool aSide );
350 void uShape(
int aSides,
int aCorner,
int aTop );
Represent a set of meanders fitted over a single or two lines.
void AddMeander(MEANDER_SHAPE *aShape)
Add a new meander shape to the meandered line.
MEANDER_PLACER_BASE * m_placer
void SetBaselineOffset(int aOffset)
Set the parallel offset between the base segment and the meandered line.
void SetWidth(int aWidth)
Set the line width.
void AddCorner(const VECTOR2I &aA, const VECTOR2I &aB=VECTOR2I(0, 0))
Create a dummy meander shape representing a line corner.
void Clear()
Clear the line geometry, removing all corners and meanders.
std::vector< MEANDER_SHAPE * > m_meanders
void MeanderSegment(const SEG &aSeg, bool aSide, int aBaseIndex=0)
Fit maximum amplitude meanders on a given segment and adds to the current line.
void AddArc(const SHAPE_ARC &aArc1, const SHAPE_ARC &aArc2=SHAPE_ARC())
Create a dummy meander shape representing an arc corner.
void AddArcAndPt(const SHAPE_ARC &aArc1, const VECTOR2I &aPt2)
Create a dummy meander shape representing an arc corner.
bool CheckSelfIntersections(MEANDER_SHAPE *aShape, int aClearance)
Check if the given shape is intersecting with any other meander in the current line.
const MEANDER_SETTINGS & Settings() const
MEANDERED_LINE(MEANDER_PLACER_BASE *aPlacer, bool aIsDual=false)
std::vector< MEANDER_SHAPE * > & Meanders()
void AddPtAndArc(const VECTOR2I &aPt1, const SHAPE_ARC &aArc2)
Create a dummy meander shape representing an arc corner.
Base class for Single trace & Differential pair meandering tools, as both of them share a lot of code...
Dimensions for the meandering algorithm.
int m_minAmplitude
Maximum meandering amplitude.
void SetTargetLength(long long int aOpt)
static const long long int LENGTH_UNCONSTRAINED
int m_cornerRadiusPercentage
Place meanders on one side.
MEANDER_SIDE m_initialSide
Allowable tuning error.
bool m_singleSided
Initial side when placing meanders at segment.
static const int SKEW_UNCONSTRAINED
MINOPTMAX< long long int > m_targetLength
Target skew value for diff pair de-skewing.
void SetTargetSkew(int aOpt)
int m_lengthTolerance
Keep vertices between pre, tuned and post parts of the line.
int m_step
Length PadToDie.
MINOPTMAX< int > m_targetSkew
static const long long int DEFAULT_TOLERANCE
MEANDER_STYLE m_cornerStyle
Rounding percentage (0 - 100).
int m_maxAmplitude
Meandering period/spacing (see dialog picture for explanation).
bool m_overrideCustomRules
Type of corners for the meandered line.
int m_lenPadToDie
Desired length of the tuned line/diff pair (this is in nm, so allow more than board width).
int m_spacing
Amplitude/spacing adjustment step.
The geometry of a single meander.
MEANDER_TYPE m_type
The placer that placed this meander.
MEANDER_PLACER_BASE * m_placer
Dual or single line.
SEG m_baseSeg
Base segment (clipped).
MEANDER_SHAPE(MEANDER_PLACER_BASE *aPlacer, int aWidth, bool aIsDual=false)
SEG m_clippedBaseSeg
Side (true = right).
void SetType(MEANDER_TYPE aType)
Set the type of the meander.
int m_targetBaseLen
First point of the meandered line.
SHAPE_LINE_CHAIN genMeanderShape(const VECTOR2D &aP, const VECTOR2D &aDir, bool aSide, MEANDER_TYPE aType, int aBaselineOffset=0)
Recalculate the clipped baseline after the parameters of the meander have been changed.
void start(SHAPE_LINE_CHAIN *aTarget, const VECTOR2D &aWhere, const VECTOR2D &aDir)
Move turtle forward by aLength.
void SetBaseIndex(int aIndex)
Set an auxiliary index of the segment being meandered in its original LINE.
int m_baselineOffset
Average radius of meander corners (for correction of DP meanders).
VECTOR2D m_currentDir
The current turtle position.
int m_width
Amplitude of the meander.
VECTOR2D m_currentPos
The line the turtle is drawing on.
SHAPE_LINE_CHAIN m_shapes[2]
Index of the meandered segment in the base line.
long long int CurrentLength() const
bool m_side
The actual shapes (0 used for single, both for dual).
void updateBaseSegment()
Return sanitized corner radius value.
SHAPE_LINE_CHAIN makeMiterShape(const VECTOR2D &aP, const VECTOR2D &aDir, bool aSide)
Produce a meander shape of given type.
void MakeArc(const SHAPE_ARC &aArc1, const SHAPE_ARC &aArc2=SHAPE_ARC())
Create a dummy meander shape representing an arc corner.
void SetTargetBaselineLength(int aLength)
Sets the target length of the baseline.
int m_baseIndex
The current turtle direction.
SHAPE_LINE_CHAIN * m_currentTarget
bool m_dual
Width of the line.
void Recalculate()
Recalculate the line chain representing the meander's shape.
void miter(int aRadius, bool aSide)
Tell the turtle to draw an U-like shape.
long long int MinTunableLength() const
void Resize(int aAmpl)
Change the amplitude of the meander shape to aAmpl and recalculates the resulting line chain.
int m_meanCornerRadius
Minimum length of the base segment to target when resizing.
int spacing() const
The type of meander.
int m_amplitude
Offset wrs the base segment (dual only).
int cornerRadius() const
Return sanitized spacing value.
void turn(const EDA_ANGLE &aAngle)
Tell the turtle to draw a mitered corner of given radius and turn direction.
void SetBaselineOffset(int aOffset)
Set the parallel offset between the base segment and the meandered line.
void forward(int aLength)
Turn the turtle by aAngle.
MEANDER_TYPE Type() const
VECTOR2I m_p0
Base segment (unclipped).
const MEANDER_SETTINGS & Settings() const
void MakeEmpty()
Replace the meander with straight bypass line(s), effectively clearing it.
bool Fit(MEANDER_TYPE aType, const SEG &aSeg, const VECTOR2I &aP, bool aSide)
Attempt to fit a meander of a given type onto a segment, avoiding collisions with other board feature...
void uShape(int aSides, int aCorner, int aTop)
Generate a 90-degree circular arc.
const SHAPE_LINE_CHAIN & CLine(int aShape) const
int BaselineLength() const
const SEG & BaseSegment() const
Return the base segment the meander was fitted to.
void MakeCorner(const VECTOR2I &aP1, const VECTOR2I &aP2=VECTOR2I(0, 0))
Create a dummy meander shape representing a line corner.
Represent a polyline containing arcs as well as line segments: A chain of connected line and/or arc s...
Push and Shove diff pair dimensions (gap) settings dialog.
MEANDER_TYPE
Shapes of available meanders.
VECTOR2< int32_t > VECTOR2I