KiCad PCB EDA Suite
C_MICROSTRIP Class Reference

#include <c_microstrip.h>

Inheritance diagram for C_MICROSTRIP:
TRANSLINE

Public Member Functions

 C_MICROSTRIP ()
 
 ~C_MICROSTRIP ()
 
void setProperty (enum PRMS_ID aPrmId, double aValue)
 
double getProperty (enum PRMS_ID aPrmId)
 
void getProperties ()
 @function getProperties More...
 
void checkProperties ()
 @function checkProperties More...
 
void setResult (int, const wxString &)
 
void setResult (int, double, const wxString &)
 
bool isSelected (enum PRMS_ID aPrmId)
 
void Init ()
 
virtual void synthesize ()
 
virtual void calc ()
 
void analyze ()
 

Public Attributes

const char * m_Name
 
KIGFX::COLOR4D errCol = KIGFX::COLOR4D( 1, 0.63, 0.63, 1 )
 
KIGFX::COLOR4D warnCol = KIGFX::COLOR4D( 1, 1, 0.57, 1 )
 
KIGFX::COLOR4D okCol = KIGFX::COLOR4D( 1, 1, 1, 1 )
 

Protected Member Functions

bool minimizeZ0Error1D (double *)
 @function minimizeZ0Error1D More...
 
double skin_depth ()
 @function skin_depth calculate skin depth More...
 
void ellipke (double, double &, double &)
 
double ellipk (double)
 
void setErrorLevel (PRMS_ID, char)
 @function setErrorLevel More...
 

Protected Attributes

double m_parameters [EXTRA_PRMS_COUNT]
 
double len
 
double er_eff
 
double ang_l
 

Private Member Functions

double delta_u_thickness_single (double, double)
 
void delta_u_thickness ()
 
void compute_single_line ()
 
double filling_factor_even (double, double, double)
 
double filling_factor_odd (double, double, double)
 filling_factor_odd() - compute the filling factor for the coupled microstrips odd-mode without cover and zero conductor thickness More...
 
double delta_q_cover_even (double)
 
double delta_q_cover_odd (double)
 
void er_eff_static ()
 er_eff_static() - compute the static effective dielectric constants More...
 
double delta_Z0_even_cover (double, double, double)
 delta_Z0_even_cover() - compute the even-mode impedance correction for a homogeneous microstrip due to the cover More...
 
double delta_Z0_odd_cover (double, double, double)
 delta_Z0_odd_cover() - compute the odd-mode impedance correction for a homogeneous microstrip due to the cover More...
 
void Z0_even_odd ()
 Z0_even_odd() - compute the static even- and odd-mode static impedances. More...
 
void er_eff_freq ()
 
void conductor_losses ()
 
void dielectric_losses ()
 
void attenuation ()
 
void line_angle ()
 
void diff_impedance ()
 Note that differential impedance is exactly twice the odd mode impedance. More...
 
void syn_err_fun (double *, double *, double, double, double, double, double)
 
void synth_width ()
 
void Z0_dispersion ()
 
void calcAnalyze () override
 Computation for analysis. More...
 
void calcSynthesize () override
 Computation for synthesis. More...
 
void showAnalyze () override
 Shows synthesis results and checks for errors / warnings. More...
 
void showSynthesize () override
 Shows analysis results and checks for errors / warnings. More...
 
void show_results () override
 Shows results. More...
 
void syn_fun (double *, double *, double, double, double, double)
 

Private Attributes

double h
 
double ht
 
double t
 
double rough
 
double w
 
double w_t_e
 
double w_t_o
 
double l
 
double s
 
double Z0_e_0
 
double Z0_o_0
 
double Zdiff
 
double Z0e
 
double Z0o
 
double c_e
 
double c_o
 
double ang_l_e
 
double ang_l_o
 
double er_eff_e
 
double er_eff_o
 
double er_eff_e_0
 
double er_eff_o_0
 
double w_eff
 
double atten_dielectric_e
 
double atten_cond_e
 
double atten_dielectric_o
 
double atten_cond_o
 
MICROSTRIPaux_ms
 

Detailed Description

Definition at line 31 of file c_microstrip.h.

Constructor & Destructor Documentation

◆ C_MICROSTRIP()

C_MICROSTRIP::C_MICROSTRIP ( )

Definition at line 39 of file c_microstrip.cpp.

39  : TRANSLINE(),
40  h( 0.0 ), // height of substrate
41  ht( 0.0 ), // height to the top of box
42  t( 0.0 ), // thickness of top metal
43  rough( 0.0 ), // Roughness of top metal
44  w( 0.0 ), // width of lines
45  w_t_e( 0.0 ), // even-mode thickness-corrected line width
46  w_t_o( 0.0 ), // odd-mode thickness-corrected line width
47  l( 0.0 ), // length of lines
48  s( 0.0 ), // spacing of lines
49  Z0_e_0( 0.0 ), // static even-mode impedance
50  Z0_o_0( 0.0 ), // static odd-mode impedance
51  Zdiff( 0.0), // differential impedance
52  Z0e( 0.0 ), // even-mode impedance
53  Z0o( 0.0 ), // odd-mode impedance
54  c_e( 0.0 ), // even-mode capacitance
55  c_o( 0.0 ), // odd-mode capacitance
56  ang_l_e( 0.0 ), // even-mode electrical length in angle
57  ang_l_o( 0.0 ), // odd-mode electrical length in angle
58  er_eff_e( 0.0 ), // even-mode effective dielectric constant
59  er_eff_o( 0.0 ), // odd-mode effective dielectric constant
60  er_eff_e_0( 0.0 ), // static even-mode effective dielectric constant
61  er_eff_o_0( 0.0 ), // static odd-mode effective dielectric constant
62  w_eff( 0.0 ), // Effective width of line
63  atten_dielectric_e( 0.0 ), // even-mode dielectric losses (dB)
64  atten_cond_e( 0.0 ), // even-mode conductors losses (dB)
65  atten_dielectric_o( 0.0 ), // odd-mode dielectric losses (dB)
66  atten_cond_o( 0.0 ), // odd-mode conductors losses (dB)
67  aux_ms( nullptr )
68 {
69  m_Name = "Coupled_MicroStrip";
70  Init();
71 }
double er_eff_o
Definition: c_microstrip.h:57
double er_eff_o_0
Definition: c_microstrip.h:59
double w_t_e
Definition: c_microstrip.h:43
void Init()
Definition: transline.cpp:98
double er_eff_e
Definition: c_microstrip.h:56
double atten_dielectric_e
Definition: c_microstrip.h:61
double ang_l_o
Definition: c_microstrip.h:55
double ang_l_e
Definition: c_microstrip.h:54
double Zdiff
Definition: c_microstrip.h:49
double w_eff
Definition: c_microstrip.h:60
double atten_cond_o
Definition: c_microstrip.h:64
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96
const char * m_Name
Definition: transline.h:84
double Z0_e_0
Definition: c_microstrip.h:47
double atten_dielectric_o
Definition: c_microstrip.h:63
double er_eff_e_0
Definition: c_microstrip.h:58
double atten_cond_e
Definition: c_microstrip.h:62
double rough
Definition: c_microstrip.h:41
double w_t_o
Definition: c_microstrip.h:44
double Z0_o_0
Definition: c_microstrip.h:48

References TRANSLINE::Init(), and TRANSLINE::m_Name.

◆ ~C_MICROSTRIP()

C_MICROSTRIP::~C_MICROSTRIP ( )

Definition at line 74 of file c_microstrip.cpp.

75 {
76  delete aux_ms;
77 }
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96

References aux_ms.

Member Function Documentation

◆ analyze()

void TRANSLINE::analyze ( )
inherited

Definition at line 219 of file transline.cpp.

220 {
221  getProperties();
222  checkProperties();
223  calcAnalyze();
224  showAnalyze();
225  show_results();
226 }
virtual void calcAnalyze()
Computation for analysis.
Definition: transline.h:102
virtual void show_results()
Shows results.
Definition: transline.h:122
void checkProperties()
@function checkProperties
Definition: transline.cpp:177
void getProperties()
@function getProperties
Definition: transline.cpp:158
virtual void showAnalyze()
Shows synthesis results and checks for errors / warnings.
Definition: transline.h:112

References TRANSLINE::calcAnalyze(), TRANSLINE::checkProperties(), TRANSLINE::getProperties(), TRANSLINE::show_results(), and TRANSLINE::showAnalyze().

Referenced by PANEL_TRANSLINE::OnTranslineAnalyse().

◆ attenuation()

void C_MICROSTRIP::attenuation ( )
private

Definition at line 553 of file c_microstrip.cpp.

554 {
558 }
void dielectric_losses()
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
void conductor_losses()
double skin_depth()
@function skin_depth calculate skin depth
Definition: transline.cpp:245

References conductor_losses(), dielectric_losses(), TRANSLINE::m_parameters, TRANSLINE::skin_depth(), and SKIN_DEPTH_PRM.

Referenced by calcAnalyze().

◆ calc()

virtual void TRANSLINE::calc ( )
inlinevirtualinherited

Definition at line 97 of file transline.h.

97 {}

◆ calcAnalyze()

void C_MICROSTRIP::calcAnalyze ( )
overrideprivatevirtual

Computation for analysis.

Reimplemented from TRANSLINE.

Definition at line 797 of file c_microstrip.cpp.

798 {
799  /* compute thickness corrections */
801  /* get effective dielectric constants */
802  er_eff_static();
803  /* impedances for even- and odd-mode */
804  Z0_even_odd();
805  /* calculate freq dependence of er_eff_e, er_eff_o */
806  er_eff_freq();
807  /* calculate frequency dependence of Z0e, Z0o */
808  Z0_dispersion();
809  /* calculate losses */
810  attenuation();
811  /* calculate electrical lengths */
812  line_angle();
813  /* calculate diff impedance */
814  diff_impedance();
815 }
void er_eff_freq()
void Z0_dispersion()
void er_eff_static()
er_eff_static() - compute the static effective dielectric constants
void Z0_even_odd()
Z0_even_odd() - compute the static even- and odd-mode static impedances.
void delta_u_thickness()
void diff_impedance()
Note that differential impedance is exactly twice the odd mode impedance.
void attenuation()

References attenuation(), delta_u_thickness(), diff_impedance(), er_eff_freq(), er_eff_static(), line_angle(), Z0_dispersion(), and Z0_even_odd().

Referenced by calcSynthesize(), and syn_fun().

◆ calcSynthesize()

void C_MICROSTRIP::calcSynthesize ( )
overrideprivatevirtual

Computation for synthesis.

Reimplemented from TRANSLINE.

Definition at line 904 of file c_microstrip.cpp.

905 {
906  double Z0_e, Z0_o, ang_l_dest;
907  double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
908  double eps = 1e-04;
909  double w_h, s_h, le, lo;
910 
911 
912  /* required value of Z0_e and Z0_o */
913  Z0_e = m_parameters[Z0_E_PRM];
914  Z0_o = m_parameters[Z0_O_PRM];
915 
916 
919  ang_l_dest = m_parameters[ANG_L_PRM];
920 
921 
922  /* calculate width and use for initial value in Newton's method */
923  synth_width();
926  f1 = f2 = 0;
927 
928  /* rather crude Newton-Rhapson */
929  do
930  {
931  /* compute Jacobian */
932  syn_fun( &ft1, &ft2, s_h + eps, w_h, Z0_e, Z0_o );
933  j11 = ( ft1 - f1 ) / eps;
934  j21 = ( ft2 - f2 ) / eps;
935  syn_fun( &ft1, &ft2, s_h, w_h + eps, Z0_e, Z0_o );
936  j12 = ( ft1 - f1 ) / eps;
937  j22 = ( ft2 - f2 ) / eps;
938 
939  /* compute next step; increments of s_h and w_h */
940  d_s_h = ( -f1 * j22 + f2 * j12 ) / ( j11 * j22 - j21 * j12 );
941  d_w_h = ( -f2 * j11 + f1 * j21 ) / ( j11 * j22 - j21 * j12 );
942 
943  s_h += d_s_h;
944  w_h += d_w_h;
945 
946  /* compute the error with the new values of s_h and w_h */
947  syn_fun( &f1, &f2, s_h, w_h, Z0_e, Z0_o );
948  err = sqrt( f1 * f1 + f2 * f2 );
949 
950  /* converged ? */
951  } while( err > 1e-04 );
952 
953  /* denormalize computed width and spacing */
956 
957 
958  /* calculate physical length */
959  le = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_e ) * ang_l_dest / 2.0 / M_PI;
960  lo = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_o ) * ang_l_dest / 2.0 / M_PI;
961  m_parameters[PHYS_LEN_PRM] = sqrt( le * lo );
962 
963  calcAnalyze();
964 
965  m_parameters[ANG_L_PRM] = ang_l_dest;
966  m_parameters[Z0_E_PRM] = Z0_e;
967  m_parameters[Z0_O_PRM] = Z0_o;
968 }
double er_eff_o
Definition: c_microstrip.h:57
void syn_fun(double *, double *, double, double, double, double)
double er_eff_e
Definition: c_microstrip.h:56
double ang_l_o
Definition: c_microstrip.h:55
double ang_l_e
Definition: c_microstrip.h:54
void synth_width()
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define C0
Definition: units.h:61
void calcAnalyze() override
Computation for analysis.

References ang_l_e, ang_l_o, ANG_L_PRM, C0, calcAnalyze(), er_eff_e, er_eff_o, FREQUENCY_PRM, H_PRM, TRANSLINE::m_parameters, PHYS_LEN_PRM, PHYS_S_PRM, PHYS_WIDTH_PRM, syn_fun(), synth_width(), Z0_E_PRM, and Z0_O_PRM.

◆ checkProperties()

void TRANSLINE::checkProperties ( )
inherited

@function checkProperties

Checks the input parameters (ie: negative length). Does not check for incompatibility between values as this depends on the line shape.

Definition at line 177 of file transline.cpp.

178 {
179  // Do not check for values that are results of analyzing / synthesizing
180  // Do not check for transline specific incompatibilities ( like " conductor height should be lesser than dielectric height")
181  if( !std::isfinite( m_parameters[EPSILONR_PRM] ) || m_parameters[EPSILONR_PRM] <= 0 )
183 
184  if( !std::isfinite( m_parameters[TAND_PRM] ) || m_parameters[TAND_PRM] < 0 )
186 
187  if( !std::isfinite( m_parameters[RHO_PRM] ) || m_parameters[RHO_PRM] < 0 )
189 
190  if( !std::isfinite( m_parameters[H_PRM] ) || m_parameters[H_PRM] < 0 )
192 
193  if( !std::isfinite( m_parameters[TWISTEDPAIR_TWIST_PRM] )
196 
197  if( !std::isfinite( m_parameters[STRIPLINE_A_PRM] ) || m_parameters[STRIPLINE_A_PRM] <= 0 )
199 
200  if( !std::isfinite( m_parameters[H_T_PRM] ) || m_parameters[H_T_PRM] <= 0 )
202 
203  // How can we check ROUGH_PRM ?
204 
205  if( !std::isfinite( m_parameters[MUR_PRM] ) || m_parameters[MUR_PRM] < 0 )
207 
208  if( !std::isfinite( m_parameters[TWISTEDPAIR_EPSILONR_ENV_PRM] )
211 
212  if( !std::isfinite( m_parameters[MURC_PRM] ) || m_parameters[MURC_PRM] < 0 )
214 
215  if( !std::isfinite( m_parameters[FREQUENCY_PRM] ) || m_parameters[FREQUENCY_PRM] <= 0 )
217 }
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define TRANSLINE_WARNING
Definition: transline.h:30
void setErrorLevel(PRMS_ID, char)
@function setErrorLevel
Definition: transline.cpp:443

References EPSILONR_PRM, FREQUENCY_PRM, H_PRM, H_T_PRM, TRANSLINE::m_parameters, MUR_PRM, MURC_PRM, RHO_PRM, TRANSLINE::setErrorLevel(), STRIPLINE_A_PRM, TAND_PRM, TRANSLINE_WARNING, TWISTEDPAIR_EPSILONR_ENV_PRM, and TWISTEDPAIR_TWIST_PRM.

Referenced by TRANSLINE::analyze(), and TRANSLINE::synthesize().

◆ compute_single_line()

void C_MICROSTRIP::compute_single_line ( )
private

Definition at line 152 of file c_microstrip.cpp.

153 {
154  if( aux_ms == NULL )
155  aux_ms = new MICROSTRIP();
156 
157  /* prepare parameters for single microstrip computations */
161  aux_ms->m_parameters[T_PRM] = 0.0;
162 
163  //aux_ms->m_parameters[H_T_PRM] = m_parameters[H_T_PRM];
164  aux_ms->m_parameters[H_T_PRM] = 1e12; /* arbitrarily high */
168  aux_ms->dispersion();
169 }
void dispersion()
Definition: microstrip.cpp:288
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96
void microstrip_Z0()
Definition: microstrip.cpp:176

References aux_ms, MICROSTRIP::dispersion(), EPSILONR_PRM, FREQUENCY_PRM, H_PRM, H_T_PRM, TRANSLINE::m_parameters, MICROSTRIP::microstrip_Z0(), MURC_PRM, PHYS_WIDTH_PRM, and T_PRM.

Referenced by er_eff_static().

◆ conductor_losses()

void C_MICROSTRIP::conductor_losses ( )
private

Definition at line 478 of file c_microstrip.cpp.

479 {
480  double e_r_eff_e_0, e_r_eff_o_0, Z0_h_e, Z0_h_o, delta;
481  double K, R_s, Q_c_e, Q_c_o, alpha_c_e, alpha_c_o;
482 
483  e_r_eff_e_0 = er_eff_e_0;
484  e_r_eff_o_0 = er_eff_o_0;
485  Z0_h_e = Z0_e_0 * sqrt( e_r_eff_e_0 ); /* homogeneous stripline impedance */
486  Z0_h_o = Z0_o_0 * sqrt( e_r_eff_o_0 ); /* homogeneous stripline impedance */
488 
489  if( m_parameters[FREQUENCY_PRM] > 0.0 )
490  {
491  /* current distribution factor (same for the two modes) */
492  K = exp( -1.2 * pow( ( Z0_h_e + Z0_h_o ) / ( 2.0 * ZF0 ), 0.7 ) );
493  /* skin resistance */
494  R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );
495  /* correction for surface roughness */
496  R_s *= 1.0
497  + ( ( 2.0 / M_PI )
498  * atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );
499 
500  /* even-mode strip inductive quality factor */
501  Q_c_e = ( M_PI * Z0_h_e * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
502  / ( R_s * C0 * K );
503  /* even-mode losses per unith length */
504  alpha_c_e = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
505  * sqrt( e_r_eff_e_0 ) / ( C0 * Q_c_e );
506 
507  /* odd-mode strip inductive quality factor */
508  Q_c_o = ( M_PI * Z0_h_o * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
509  / ( R_s * C0 * K );
510  /* odd-mode losses per unith length */
511  alpha_c_o = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
512  * sqrt( e_r_eff_o_0 ) / ( C0 * Q_c_o );
513  }
514  else
515  {
516  alpha_c_e = alpha_c_o = 0.0;
517  }
518 
519  atten_cond_e = alpha_c_e * m_parameters[PHYS_LEN_PRM];
520  atten_cond_o = alpha_c_o * m_parameters[PHYS_LEN_PRM];
521 }
double er_eff_o_0
Definition: c_microstrip.h:59
#define ZF0
Definition: units.h:62
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double atten_cond_o
Definition: c_microstrip.h:64
double Z0_e_0
Definition: c_microstrip.h:47
#define C0
Definition: units.h:61
double er_eff_e_0
Definition: c_microstrip.h:58
double atten_cond_e
Definition: c_microstrip.h:62
constexpr int delta
double Z0_o_0
Definition: c_microstrip.h:48

References atten_cond_e, atten_cond_o, C0, delta, er_eff_e_0, er_eff_o_0, FREQUENCY_PRM, TRANSLINE::m_parameters, PHYS_LEN_PRM, PHYS_WIDTH_PRM, ROUGH_PRM, SIGMA_PRM, SKIN_DEPTH_PRM, Z0_e_0, Z0_o_0, and ZF0.

Referenced by attenuation().

◆ delta_q_cover_even()

double C_MICROSTRIP::delta_q_cover_even ( double  h2h)
private

Definition at line 215 of file c_microstrip.cpp.

216 {
217  double q_c;
218 
219  if( h2h <= 39 )
220  q_c = tanh( 1.626 + 0.107 * h2h - 1.733 / sqrt( h2h ) );
221  else
222  q_c = 1.0;
223 
224  return q_c;
225 }

Referenced by er_eff_static().

◆ delta_q_cover_odd()

double C_MICROSTRIP::delta_q_cover_odd ( double  h2h)
private

Definition at line 232 of file c_microstrip.cpp.

233 {
234  double q_c;
235 
236  if( h2h <= 7 )
237  q_c = tanh( 9.575 / ( 7.0 - h2h ) - 2.965 + 1.68 * h2h - 0.311 * h2h * h2h );
238  else
239  q_c = 1.0;
240 
241  return q_c;
242 }

Referenced by er_eff_static().

◆ delta_u_thickness()

void C_MICROSTRIP::delta_u_thickness ( )
private

Definition at line 120 of file c_microstrip.cpp.

121 {
122  double e_r, u, g, t_h;
123  double delta_u, delta_t, delta_u_e, delta_u_o;
124 
125  e_r = m_parameters[EPSILONR_PRM];
126  u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalized line width */
127  g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
128  t_h = m_parameters[T_PRM] / m_parameters[H_PRM]; /* normalized strip thickness */
129 
130  if( t_h > 0.0 )
131  {
132  /* single microstrip correction for finite strip thickness */
133  delta_u = delta_u_thickness_single( u, t_h );
134  delta_t = t_h / ( g * e_r );
135  /* thickness correction for the even- and odd-mode */
136  delta_u_e = delta_u * ( 1.0 - 0.5 * exp( -0.69 * delta_u / delta_t ) );
137  delta_u_o = delta_u_e + delta_t;
138  }
139  else
140  {
141  delta_u_e = delta_u_o = 0.0;
142  }
143 
146 }
double w_t_e
Definition: c_microstrip.h:43
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double delta_u_thickness_single(double, double)
double w_t_o
Definition: c_microstrip.h:44

References delta_u_thickness_single(), EPSILONR_PRM, H_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, PHYS_WIDTH_PRM, T_PRM, w_t_e, and w_t_o.

Referenced by calcAnalyze().

◆ delta_u_thickness_single()

double C_MICROSTRIP::delta_u_thickness_single ( double  u,
double  t_h 
)
private

Definition at line 88 of file c_microstrip.cpp.

89 {
90  double delta_u;
91 
92  if( t_h > 0.0 )
93  {
94  delta_u =
95  (1.25 * t_h /
96  M_PI) *
97  ( 1.0 +
98  log( ( 2.0 +
99  (4.0 * M_PI * u -
100  2.0) / ( 1.0 + exp( -100.0 * ( u - 1.0 / (2.0 * M_PI) ) ) ) ) / t_h ) );
101 
102  }
103  else
104  {
105  delta_u = 0.0;
106  }
107  return delta_u;
108 }

Referenced by delta_u_thickness().

◆ delta_Z0_even_cover()

double C_MICROSTRIP::delta_Z0_even_cover ( double  g,
double  u,
double  h2h 
)
private

delta_Z0_even_cover() - compute the even-mode impedance correction for a homogeneous microstrip due to the cover

References: S. March, "Microstrip Packaging: Watch the Last Step", Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.

Definition at line 307 of file c_microstrip.cpp.

308 {
309  double f_e, g_e, delta_Z0_even;
310  double x, y, A, B, C, D, E, F;
311 
312  A = -4.351 / pow( 1.0 + h2h, 1.842 );
313  B = 6.639 / pow( 1.0 + h2h, 1.861 );
314  C = -2.291 / pow( 1.0 + h2h, 1.90 );
315  f_e = 1.0 - atanh( A + ( B + C * u ) * u );
316 
317  x = pow( 10.0, 0.103 * g - 0.159 );
318  y = pow( 10.0, 0.0492 * g - 0.073 );
319  D = 0.747 / sin( 0.5 * M_PI * x );
320  E = 0.725 * sin( 0.5 * M_PI * y );
321  F = pow( 10.0, 0.11 - 0.0947 * g );
322  g_e = 270.0 * ( 1.0 - tanh( D + E * sqrt( 1.0 + h2h ) - F / ( 1.0 + h2h ) ) );
323 
324  delta_Z0_even = f_e * g_e;
325 
326  return delta_Z0_even;
327 }
double atanh(double x)
Definition: units.h:51
#define F(x, y, z)
Definition: md5_hash.cpp:15

References A, atanh(), B, C, D, E, and F.

Referenced by Z0_even_odd().

◆ delta_Z0_odd_cover()

double C_MICROSTRIP::delta_Z0_odd_cover ( double  g,
double  u,
double  h2h 
)
private

delta_Z0_odd_cover() - compute the odd-mode impedance correction for a homogeneous microstrip due to the cover

References: S. March, "Microstrip Packaging: Watch the Last Step", Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.

Definition at line 337 of file c_microstrip.cpp.

338 {
339  double f_o, g_o, delta_Z0_odd;
340  double G, J, K, L;
341 
342  J = tanh( pow( 1.0 + h2h, 1.585 ) / 6.0 );
343  f_o = pow( u, J );
344 
345  G = 2.178 - 0.796 * g;
346 
347  if( g > 0.858 )
348  K = log10( 20.492 * pow( g, 0.174 ) );
349  else
350  K = 1.30;
351 
352  if( g > 0.873 )
353  L = 2.51 * pow( g, -0.462 );
354  else
355  L = 2.674;
356 
357  g_o = 270.0 * ( 1.0 - tanh( G + K * sqrt( 1.0 + h2h ) - L / ( 1.0 + h2h ) ) );
358 
359  delta_Z0_odd = f_o * g_o;
360 
361  return delta_Z0_odd;
362 }
#define G(x, y, z)
Definition: md5_hash.cpp:16

References G.

Referenced by Z0_even_odd().

◆ dielectric_losses()

void C_MICROSTRIP::dielectric_losses ( )
private

Definition at line 528 of file c_microstrip.cpp.

529 {
530  double e_r, e_r_eff_e_0, e_r_eff_o_0;
531  double alpha_d_e, alpha_d_o;
532 
533  e_r = m_parameters[EPSILONR_PRM];
534  e_r_eff_e_0 = er_eff_e_0;
535  e_r_eff_o_0 = er_eff_o_0;
536 
537  alpha_d_e = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
538  * ( e_r / sqrt( e_r_eff_e_0 ) ) * ( ( e_r_eff_e_0 - 1.0 ) / ( e_r - 1.0 ) )
540  alpha_d_o = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
541  * ( e_r / sqrt( e_r_eff_o_0 ) ) * ( ( e_r_eff_o_0 - 1.0 ) / ( e_r - 1.0 ) )
543 
546 }
double er_eff_o_0
Definition: c_microstrip.h:59
double atten_dielectric_e
Definition: c_microstrip.h:61
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double atten_dielectric_o
Definition: c_microstrip.h:63
#define C0
Definition: units.h:61
double er_eff_e_0
Definition: c_microstrip.h:58

References atten_dielectric_e, atten_dielectric_o, C0, EPSILONR_PRM, er_eff_e_0, er_eff_o_0, FREQUENCY_PRM, TRANSLINE::m_parameters, PHYS_LEN_PRM, and TAND_PRM.

Referenced by attenuation().

◆ diff_impedance()

void C_MICROSTRIP::diff_impedance ( )
private

Note that differential impedance is exactly twice the odd mode impedance.

Odd mode is not the same as single-ended impedance, so avoid approximations found on websites that use static single ended impedance as the starting point

Definition at line 591 of file c_microstrip.cpp.

592 {
593  Zdiff = 2 * Z0_o_0;
594 }
double Zdiff
Definition: c_microstrip.h:49
double Z0_o_0
Definition: c_microstrip.h:48

References Z0_o_0, and Zdiff.

Referenced by calcAnalyze().

◆ ellipk()

double TRANSLINE::ellipk ( double  k)
protectedinherited

Definition at line 332 of file transline.cpp.

333 {
334  double r, lost;
335 
336  ellipke( k, r, lost );
337  return r;
338 }
E_SERIE r
Definition: eserie.cpp:41
void ellipke(double, double &, double &)
Definition: transline.cpp:267

References TRANSLINE::ellipke(), and r.

Referenced by COPLANAR::calcAnalyze().

◆ ellipke()

void TRANSLINE::ellipke ( double  arg,
double &  k,
double &  e 
)
protectedinherited

Definition at line 267 of file transline.cpp.

268 {
269  int iMax = 16;
270 
271  if( arg == 1.0 )
272  {
273  k = INFINITY; // infinite
274  e = 0;
275  }
276  else if( std::isinf( arg ) && arg < 0 )
277  {
278  k = 0;
279  e = INFINITY; // infinite
280  }
281  else
282  {
283  double a, b, c, fr, s, fk = 1, fe = 1, t, da = arg;
284  int i;
285 
286  if( arg < 0 )
287  {
288  fk = 1 / sqrt( 1 - arg );
289  fe = sqrt( 1 - arg );
290  da = -arg / ( 1 - arg );
291  }
292 
293  a = 1;
294  b = sqrt( 1 - da );
295  c = sqrt( da );
296  fr = 0.5;
297  s = fr * c * c;
298 
299  for( i = 0; i < iMax; i++ )
300  {
301  t = ( a + b ) / 2;
302  c = ( a - b ) / 2;
303  b = sqrt( a * b );
304  a = t;
305  fr *= 2;
306  s += fr * c * c;
307 
308  if( c / a < NR_EPSI )
309  break;
310  }
311 
312  if( i >= iMax )
313  {
314  k = 0;
315  e = 0;
316  }
317  else
318  {
319  k = M_PI_2 / a;
320  e = M_PI_2 * ( 1 - s ) / a;
321  if( arg < 0 )
322  {
323  k *= fk;
324  e *= fe;
325  }
326  }
327  }
328 }
#define M_PI_2
Definition: transline.cpp:40
#define NR_EPSI
Definition: transline.cpp:261
#define INFINITY
Definition: transline.cpp:35

References INFINITY, M_PI_2, and NR_EPSI.

Referenced by TRANSLINE::ellipk().

◆ er_eff_freq()

void C_MICROSTRIP::er_eff_freq ( )
private

Definition at line 428 of file c_microstrip.cpp.

429 {
430  double P_1, P_2, P_3, P_4, P_5, P_6, P_7;
431  double P_8, P_9, P_10, P_11, P_12, P_13, P_14, P_15;
432  double F_e, F_o;
433  double er_eff, u, g, f_n;
434 
435  u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
436  g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalize line spacing */
437 
438  /* normalized frequency [GHz * mm] */
439  f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
440 
441  er_eff = er_eff_e_0;
442  P_1 = 0.27488 + ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) * u
443  - 0.065683 * exp( -8.7513 * u );
444  P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * m_parameters[EPSILONR_PRM] ) );
445  P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
446  P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( m_parameters[EPSILONR_PRM] / 15.916, 8.0 ) ) );
447  P_5 = 0.334 * exp( -3.3 * pow( m_parameters[EPSILONR_PRM] / 15.0, 3.0 ) ) + 0.746;
448  P_6 = P_5 * exp( -pow( f_n / 18.0, 0.368 ) );
449  P_7 = 1.0
450  + 4.069 * P_6 * pow( g, 0.479 ) * exp( -1.347 * pow( g, 0.595 ) - 0.17 * pow( g, 2.5 ) );
451 
452  F_e = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 * P_7 ) * f_n, 1.5763 );
453  /* even-mode effective dielectric constant */
455 
456  er_eff = er_eff_o_0;
457  P_8 = 0.7168 * ( 1.0 + 1.076 / ( 1.0 + 0.0576 * ( m_parameters[EPSILONR_PRM] - 1.0 ) ) );
458  P_9 = P_8
459  - 0.7913 * ( 1.0 - exp( -pow( f_n / 20.0, 1.424 ) ) )
460  * atan( 2.481 * pow( m_parameters[EPSILONR_PRM] / 8.0, 0.946 ) );
461  P_10 = 0.242 * pow( m_parameters[EPSILONR_PRM] - 1.0, 0.55 );
462  P_11 = 0.6366 * ( exp( -0.3401 * f_n ) - 1.0 ) * atan( 1.263 * pow( u / 3.0, 1.629 ) );
463  P_12 = P_9 + ( 1.0 - P_9 ) / ( 1.0 + 1.183 * pow( u, 1.376 ) );
464  P_13 = 1.695 * P_10 / ( 0.414 + 1.605 * P_10 );
465  P_14 = 0.8928 + 0.1072 * ( 1.0 - exp( -0.42 * pow( f_n / 20.0, 3.215 ) ) );
466  P_15 = fabs( 1.0 - 0.8928 * ( 1.0 + P_11 ) * P_12 * exp( -P_13 * pow( g, 1.092 ) ) / P_14 );
467 
468  F_o = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n * P_15, 1.5763 );
469  /* odd-mode effective dielectric constant */
471 }
double er_eff_o
Definition: c_microstrip.h:57
double er_eff_o_0
Definition: c_microstrip.h:59
double er_eff
Definition: transline.h:133
double er_eff_e
Definition: c_microstrip.h:56
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double er_eff_e_0
Definition: c_microstrip.h:58

References EPSILONR_PRM, TRANSLINE::er_eff, er_eff_e, er_eff_e_0, er_eff_o, er_eff_o_0, FREQUENCY_PRM, H_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, and PHYS_WIDTH_PRM.

Referenced by calcAnalyze().

◆ er_eff_static()

void C_MICROSTRIP::er_eff_static ( )
private

er_eff_static() - compute the static effective dielectric constants

References: Manfred Kirschning and Rolf Jansen, "Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines", IEEE Trans. MTT, vol. 32, no. 1, Jan. 1984

Definition at line 253 of file c_microstrip.cpp.

254 {
255  double u_t_e, u_t_o, g, h2, h2h;
256  double a_o, t_h, q, q_c, q_t, q_inf;
257  double er_eff_single;
258  double er;
259 
261 
262  /* compute zero-thickness single line parameters */
264  er_eff_single = aux_ms->er_eff_0;
265 
266  h2 = m_parameters[H_T_PRM];
267  u_t_e = w_t_e / m_parameters[H_PRM]; /* normalized even_mode line width */
268  u_t_o = w_t_o / m_parameters[H_PRM]; /* normalized odd_mode line width */
269  g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
270  h2h = h2 / m_parameters[H_PRM]; /* normalized cover height */
271  t_h = m_parameters[T_PRM] / m_parameters[H_PRM]; /* normalized strip thickness */
272 
273  /* filling factor, computed with thickness corrected width */
274  q_inf = filling_factor_even( u_t_e, g, er );
275  /* cover effect */
276  q_c = delta_q_cover_even( h2h );
277  /* thickness effect */
278  q_t = aux_ms->delta_q_thickness( u_t_e, t_h );
279  /* resultant filling factor */
280  q = ( q_inf - q_t ) * q_c;
281  /* static even-mode effective dielectric constant */
282  er_eff_e_0 = 0.5 * ( er + 1.0 ) + 0.5 * ( er - 1.0 ) * q;
283 
284  /* filling factor, with width corrected for thickness */
285  q_inf = filling_factor_odd( u_t_o, g, er );
286  /* cover effect */
287  q_c = delta_q_cover_odd( h2h );
288  /* thickness effect */
289  q_t = aux_ms->delta_q_thickness( u_t_o, t_h );
290  /* resultant filling factor */
291  q = ( q_inf - q_t ) * q_c;
292 
293  a_o = 0.7287 * ( er_eff_single - 0.5 * ( er + 1.0 ) ) * ( 1.0 - exp( -0.179 * u_t_o ) );
294 
295  /* static odd-mode effective dielectric constant */
296  er_eff_o_0 = ( 0.5 * ( er + 1.0 ) + a_o - er_eff_single ) * q + er_eff_single;
297 }
double delta_q_thickness(double, double)
Definition: microstrip.cpp:128
double er_eff_o_0
Definition: c_microstrip.h:59
double w_t_e
Definition: c_microstrip.h:43
double er_eff_0
Definition: microstrip.h:48
double delta_q_cover_odd(double)
void compute_single_line()
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double filling_factor_even(double, double, double)
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96
double er_eff_e_0
Definition: c_microstrip.h:58
double filling_factor_odd(double, double, double)
filling_factor_odd() - compute the filling factor for the coupled microstrips odd-mode without cover ...
double delta_q_cover_even(double)
double w_t_o
Definition: c_microstrip.h:44

References aux_ms, compute_single_line(), delta_q_cover_even(), delta_q_cover_odd(), MICROSTRIP::delta_q_thickness(), EPSILONR_PRM, MICROSTRIP::er_eff_0, er_eff_e_0, er_eff_o_0, filling_factor_even(), filling_factor_odd(), H_PRM, H_T_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, T_PRM, w_t_e, and w_t_o.

Referenced by calcAnalyze().

◆ filling_factor_even()

double C_MICROSTRIP::filling_factor_even ( double  u,
double  g,
double  e_r 
)
private

Definition at line 176 of file c_microstrip.cpp.

177 {
178  double v, v3, v4, a_e, b_e, q_inf;
179 
180  v = u * ( 20.0 + g * g ) / ( 10.0 + g * g ) + g * exp( -g );
181  v3 = v * v * v;
182  v4 = v3 * v;
183  a_e = 1.0 + log( ( v4 + v * v / 2704.0 ) / ( v4 + 0.432 ) ) / 49.0
184  + log( 1.0 + v3 / 5929.741 ) / 18.7;
185  b_e = 0.564 * pow( ( ( e_r - 0.9 ) / ( e_r + 3.0 ) ), 0.053 );
186 
187  /* filling factor, with width corrected for thickness */
188  q_inf = pow( ( 1.0 + 10.0 / v ), -a_e * b_e );
189 
190  return q_inf;
191 }

Referenced by er_eff_static().

◆ filling_factor_odd()

double C_MICROSTRIP::filling_factor_odd ( double  u,
double  g,
double  e_r 
)
private

filling_factor_odd() - compute the filling factor for the coupled microstrips odd-mode without cover and zero conductor thickness

Definition at line 198 of file c_microstrip.cpp.

199 {
200  double b_odd = 0.747 * e_r / ( 0.15 + e_r );
201  double c_odd = b_odd - ( b_odd - 0.207 ) * exp( -0.414 * u );
202  double d_odd = 0.593 + 0.694 * exp( -0.562 * u );
203 
204  /* filling factor, with width corrected for thickness */
205  double q_inf = exp( -c_odd * pow( g, d_odd ) );
206 
207  return q_inf;
208 }

Referenced by er_eff_static().

◆ getProperties()

void TRANSLINE::getProperties ( )
inherited

@function getProperties

Get all properties from the UI. Computes some extra ones.

Definition at line 158 of file transline.cpp.

159 {
160  for( int i = 0; i < DUMMY_PRM; ++i )
161  {
162  m_parameters[i] = getProperty( (PRMS_ID) i );
164  }
165 
169 }
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
PRMS_ID
Definition: transline.h:36
double getProperty(enum PRMS_ID aPrmId)
Definition: transline.cpp:148
#define TRANSLINE_OK
Definition: transline.h:29
double skin_depth()
@function skin_depth calculate skin depth
Definition: transline.cpp:245
void setErrorLevel(PRMS_ID, char)
@function setErrorLevel
Definition: transline.cpp:443

References DUMMY_PRM, EPSILON_EFF_PRM, TRANSLINE::getProperty(), TRANSLINE::m_parameters, RHO_PRM, TRANSLINE::setErrorLevel(), SIGMA_PRM, TRANSLINE::skin_depth(), SKIN_DEPTH_PRM, and TRANSLINE_OK.

Referenced by TRANSLINE::analyze(), and TRANSLINE::synthesize().

◆ getProperty()

double TRANSLINE::getProperty ( enum PRMS_ID  aPrmId)
inherited

◆ Init()

void TRANSLINE::Init ( )
inherited

Definition at line 98 of file transline.cpp.

99 {
100  wxColour wxcol = wxSystemSettings::GetColour( wxSYS_COLOUR_WINDOW );
101  okCol = KIGFX::COLOR4D( wxcol );
102  okCol.r = wxcol.Red() / 255.0;
103  okCol.g = wxcol.Green() / 255.0;
104  okCol.b = wxcol.Blue() / 255.0;
105  int i;
106  // Initialize these variables mainly to avoid warnings from a static analyzer
107  for( i = 0; i < EXTRA_PRMS_COUNT; ++i )
108  {
109  m_parameters[i] = 0;
110  }
111 }
double g
Green component.
Definition: color4d.h:385
double b
Blue component.
Definition: color4d.h:386
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
KIGFX::COLOR4D okCol
Definition: transline.h:128
double r
Red component.
Definition: color4d.h:384
A color representation with 4 components: red, green, blue, alpha.
Definition: color4d.h:103

References KIGFX::COLOR4D::b, EXTRA_PRMS_COUNT, KIGFX::COLOR4D::g, TRANSLINE::m_parameters, TRANSLINE::okCol, and KIGFX::COLOR4D::r.

Referenced by C_MICROSTRIP(), COAX::COAX(), COPLANAR::COPLANAR(), MICROSTRIP::MICROSTRIP(), RECTWAVEGUIDE::RECTWAVEGUIDE(), STRIPLINE::STRIPLINE(), TRANSLINE::TRANSLINE(), and TWISTEDPAIR::TWISTEDPAIR().

◆ isSelected()

bool TRANSLINE::isSelected ( enum PRMS_ID  aPrmId)
inherited

◆ line_angle()

void C_MICROSTRIP::line_angle ( )
private

Definition at line 564 of file c_microstrip.cpp.

565 {
566  double e_r_eff_e, e_r_eff_o;
567  double v_e, v_o, lambda_g_e, lambda_g_o;
568 
569  e_r_eff_e = er_eff_e;
570  e_r_eff_o = er_eff_o;
571 
572  /* even-mode velocity */
573  v_e = C0 / sqrt( e_r_eff_e );
574  /* odd-mode velocity */
575  v_o = C0 / sqrt( e_r_eff_o );
576  /* even-mode wavelength */
577  lambda_g_e = v_e / m_parameters[FREQUENCY_PRM];
578  /* odd-mode wavelength */
579  lambda_g_o = v_o / m_parameters[FREQUENCY_PRM];
580  /* electrical angles */
581  ang_l_e = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_e; /* in radians */
582  ang_l_o = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_o; /* in radians */
583 }
double er_eff_o
Definition: c_microstrip.h:57
double er_eff_e
Definition: c_microstrip.h:56
double ang_l_o
Definition: c_microstrip.h:55
double ang_l_e
Definition: c_microstrip.h:54
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define C0
Definition: units.h:61

References ang_l_e, ang_l_o, C0, er_eff_e, er_eff_o, FREQUENCY_PRM, TRANSLINE::m_parameters, and PHYS_LEN_PRM.

Referenced by calcAnalyze().

◆ minimizeZ0Error1D()

bool TRANSLINE::minimizeZ0Error1D ( double *  aVar)
protectedinherited

@function minimizeZ0Error1D

Tries to find a parameter that minimizes the error ( on Z0 ). This function only works with a single parameter. Calls calcAnalyze several times until the error is acceptable. While the error is unnacceptable, changes slightly the parameter.

This function does not change Z0 / Angl_L.

Parameters
avarParameter to synthesize
Returns
'true' if error < MAX_ERROR, else 'false'

Definition at line 357 of file transline.cpp.

358 {
359  double Z0_dest, Z0_current, Z0_result, angl_l_dest, increment, slope, error;
360  int iteration;
361 
362  if( !std::isfinite( m_parameters[Z0_PRM] ) )
363  {
364  *aVar = NAN;
365  return false;
366  }
367 
368  if( ( !std::isfinite( *aVar ) ) || ( *aVar == 0 ) )
369  *aVar = 0.001;
370 
371  /* required value of Z0 */
372  Z0_dest = m_parameters[Z0_PRM];
373 
374  /* required value of angl_l */
375  angl_l_dest = m_parameters[ANG_L_PRM];
376 
377  /* Newton's method */
378  iteration = 0;
379 
380  /* compute parameters */
381  calcAnalyze();
382  Z0_current = m_parameters[Z0_PRM];
383 
384  error = fabs( Z0_dest - Z0_current );
385 
386  while( error > MAX_ERROR )
387  {
388  iteration++;
389  increment = *aVar / 100.0;
390  *aVar += increment;
391  /* compute parameters */
392  calcAnalyze();
393  Z0_result = m_parameters[Z0_PRM];
394  /* f(w(n)) = Z0 - Z0(w(n)) */
395  /* f'(w(n)) = -f'(Z0(w(n))) */
396  /* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
397  /* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
398  slope = ( Z0_result - Z0_current ) / increment;
399  slope = ( Z0_dest - Z0_current ) / slope - increment;
400  *aVar += slope;
401 
402  if( *aVar <= 0.0 )
403  *aVar = increment;
404 
405  /* find new error */
406  /* compute parameters */
407  calcAnalyze();
408  Z0_current = m_parameters[Z0_PRM];
409  error = fabs( Z0_dest - Z0_current );
410 
411  if( iteration > 100 )
412  break;
413  }
414 
415  /* Compute one last time, but with correct length */
416  m_parameters[Z0_PRM] = Z0_dest;
417  m_parameters[ANG_L_PRM] = angl_l_dest;
420  / 2.0 / M_PI; /* in m */
421  calcAnalyze();
422 
423  /* Restore parameters */
424  m_parameters[Z0_PRM] = Z0_dest;
425  m_parameters[ANG_L_PRM] = angl_l_dest;
428  / 2.0 / M_PI; /* in m */
429  return error <= MAX_ERROR;
430 }
virtual void calcAnalyze()
Computation for analysis.
Definition: transline.h:102
#define MAX_ERROR
Definition: transline.cpp:340
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define C0
Definition: units.h:61

References ANG_L_PRM, C0, TRANSLINE::calcAnalyze(), EPSILON_EFF_PRM, FREQUENCY_PRM, TRANSLINE::m_parameters, MAX_ERROR, PHYS_LEN_PRM, and Z0_PRM.

Referenced by COPLANAR::calcSynthesize(), TWISTEDPAIR::calcSynthesize(), STRIPLINE::calcSynthesize(), and MICROSTRIP::calcSynthesize().

◆ setErrorLevel()

void TRANSLINE::setErrorLevel ( PRMS_ID  aP,
char  aErrorLevel 
)
protectedinherited

@function setErrorLevel

set an error / warning level for a given parameter.

See also
TRANSLINE_OK
TRANSLINE_WARNING
TRANSLINE_ERROR
Parameters
aPparameter
aErrorLevelError level

Definition at line 443 of file transline.cpp.

444 {
445  switch( aErrorLevel )
446  {
449  default: SetPropertyBgColorInDialog( aP, &okCol ); break;
450  }
451 }
void SetPropertyBgColorInDialog(enum PRMS_ID aPrmId, const KIGFX::COLOR4D *aCol)
Function SetPropertyBgColorInDialog Set the background color of a parameter.
KIGFX::COLOR4D okCol
Definition: transline.h:128
KIGFX::COLOR4D errCol
Definition: transline.h:126
#define TRANSLINE_ERROR
Definition: transline.h:31
KIGFX::COLOR4D warnCol
Definition: transline.h:127
#define TRANSLINE_WARNING
Definition: transline.h:30

References TRANSLINE::errCol, TRANSLINE::okCol, SetPropertyBgColorInDialog(), TRANSLINE_ERROR, TRANSLINE_WARNING, and TRANSLINE::warnCol.

Referenced by TRANSLINE::checkProperties(), TRANSLINE::getProperties(), TWISTEDPAIR::showAnalyze(), COAX::showAnalyze(), STRIPLINE::showAnalyze(), COPLANAR::showAnalyze(), RECTWAVEGUIDE::showAnalyze(), MICROSTRIP::showAnalyze(), showAnalyze(), TWISTEDPAIR::showSynthesize(), STRIPLINE::showSynthesize(), COAX::showSynthesize(), COPLANAR::showSynthesize(), RECTWAVEGUIDE::showSynthesize(), MICROSTRIP::showSynthesize(), and showSynthesize().

◆ setProperty()

◆ setResult() [1/2]

void TRANSLINE::setResult ( int  line,
const wxString &  text 
)
inherited

◆ setResult() [2/2]

void TRANSLINE::setResult ( int  line,
double  value,
const wxString &  text 
)
inherited

Definition at line 141 of file transline.cpp.

142 {
143  SetResultInDialog( line, value, text );
144 }
void SetResultInDialog(int line, const char *text)

References SetResultInDialog(), and text.

◆ show_results()

void C_MICROSTRIP::show_results ( )
overrideprivatevirtual

Shows results.

Reimplemented from TRANSLINE.

Definition at line 872 of file c_microstrip.cpp.

873 {
874 
875  setResult( 0, er_eff_e, "" );
876  setResult( 1, er_eff_o, "" );
877  setResult( 2, atten_cond_e, wxT( "dB" ) );
878  setResult( 3, atten_cond_o, wxT( "dB" ) );
879  setResult( 4, atten_dielectric_e, wxT( "dB" ) );
880  setResult( 5, atten_dielectric_o, wxT( "dB" ) );
881 
882  setResult( 6, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, wxT( "µm" ) );
883  setResult( 7, Zdiff, wxT( "Ω" ) );
884 }
void setResult(int, const wxString &)
Definition: transline.cpp:135
double er_eff_o
Definition: c_microstrip.h:57
double er_eff_e
Definition: c_microstrip.h:56
double atten_dielectric_e
Definition: c_microstrip.h:61
double Zdiff
Definition: c_microstrip.h:49
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double atten_cond_o
Definition: c_microstrip.h:64
#define UNIT_MICRON
Definition: units_scales.h:33
double atten_dielectric_o
Definition: c_microstrip.h:63
double atten_cond_e
Definition: c_microstrip.h:62

References atten_cond_e, atten_cond_o, atten_dielectric_e, atten_dielectric_o, er_eff_e, er_eff_o, TRANSLINE::m_parameters, TRANSLINE::setResult(), SKIN_DEPTH_PRM, UNIT_MICRON, and Zdiff.

◆ showAnalyze()

void C_MICROSTRIP::showAnalyze ( )
overrideprivatevirtual

Shows synthesis results and checks for errors / warnings.

Reimplemented from TRANSLINE.

Definition at line 818 of file c_microstrip.cpp.

819 {
822  setProperty( ANG_L_PRM, sqrt( ang_l_e * ang_l_o ) );
823 
824  //Check for errors
825  if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
827 
828  if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
830 
831  if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
833 
834  // Check for warnings
835  if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
837 
838  if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
840 
841  if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
843 }
void setProperty(enum PRMS_ID aPrmId, double aValue)
Definition: transline.cpp:117
double ang_l_o
Definition: c_microstrip.h:55
double ang_l_e
Definition: c_microstrip.h:54
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define TRANSLINE_ERROR
Definition: transline.h:31
#define TRANSLINE_WARNING
Definition: transline.h:30
void setErrorLevel(PRMS_ID, char)
@function setErrorLevel
Definition: transline.cpp:443

References ang_l_e, ang_l_o, ANG_L_PRM, TRANSLINE::m_parameters, PHYS_LEN_PRM, PHYS_S_PRM, PHYS_WIDTH_PRM, TRANSLINE::setErrorLevel(), TRANSLINE::setProperty(), TRANSLINE_ERROR, TRANSLINE_WARNING, Z0_E_PRM, and Z0_O_PRM.

◆ showSynthesize()

void C_MICROSTRIP::showSynthesize ( )
overrideprivatevirtual

Shows analysis results and checks for errors / warnings.

Reimplemented from TRANSLINE.

Definition at line 845 of file c_microstrip.cpp.

846 {
850 
851  //Check for errors
852  if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
854 
855  if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
857 
858  if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
860 
861  // Check for warnings
862  if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
864 
865  if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
867 
868  if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
870 }
void setProperty(enum PRMS_ID aPrmId, double aValue)
Definition: transline.cpp:117
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
#define TRANSLINE_ERROR
Definition: transline.h:31
#define TRANSLINE_WARNING
Definition: transline.h:30
void setErrorLevel(PRMS_ID, char)
@function setErrorLevel
Definition: transline.cpp:443

References ANG_L_PRM, TRANSLINE::m_parameters, PHYS_LEN_PRM, PHYS_S_PRM, PHYS_WIDTH_PRM, TRANSLINE::setErrorLevel(), TRANSLINE::setProperty(), TRANSLINE_ERROR, TRANSLINE_WARNING, Z0_E_PRM, and Z0_O_PRM.

◆ skin_depth()

double TRANSLINE::skin_depth ( )
protectedinherited

@function skin_depth calculate skin depth

$ \frac{1}{\sqrt{ \pi \cdot f \cdot \mu \cdot \sigma }} $

Definition at line 245 of file transline.cpp.

246 {
247  double depth;
248  depth = 1.0
249  / sqrt( M_PI * m_parameters[FREQUENCY_PRM] * m_parameters[MURC_PRM] * MU0
250  * m_parameters[SIGMA_PRM] );
251  return depth;
252 }
#define MU0
Definition: units.h:60
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131

References FREQUENCY_PRM, TRANSLINE::m_parameters, MU0, MURC_PRM, and SIGMA_PRM.

Referenced by MICROSTRIP::attenuation(), attenuation(), STRIPLINE::calcAnalyze(), COPLANAR::calcAnalyze(), and TRANSLINE::getProperties().

◆ syn_err_fun()

void C_MICROSTRIP::syn_err_fun ( double *  f1,
double *  f2,
double  s_h,
double  w_h,
double  e_r,
double  w_h_se,
double  w_h_so 
)
private

Definition at line 597 of file c_microstrip.cpp.

599 {
600  double g, he;
601 
602  g = cosh( 0.5 * M_PI * s_h );
603  he = cosh( M_PI * w_h + 0.5 * M_PI * s_h );
604 
605  *f1 = ( 2.0 / M_PI ) * acosh( ( 2.0 * he - g + 1.0 ) / ( g + 1.0 ) );
606  *f2 = ( 2.0 / M_PI ) * acosh( ( 2.0 * he - g - 1.0 ) / ( g - 1.0 ) );
607 
608  if( e_r <= 6.0 )
609  *f2 += ( 4.0 / ( M_PI * ( 1.0 + e_r / 2.0 ) ) ) * acosh( 1.0 + 2.0 * w_h / s_h );
610  else
611  *f2 += ( 1.0 / M_PI ) * acosh( 1.0 + 2.0 * w_h / s_h );
612 
613  *f1 -= w_h_se;
614  *f2 -= w_h_so;
615 }
double acosh(double x)
Definition: units.h:40

References acosh().

Referenced by synth_width().

◆ syn_fun()

void C_MICROSTRIP::syn_fun ( double *  f1,
double *  f2,
double  s_h,
double  w_h,
double  Z0_e,
double  Z0_o 
)
private

Definition at line 887 of file c_microstrip.cpp.

889 {
892 
893  /* compute coupled microstrip parameters */
894  calcAnalyze();
895 
896  *f1 = m_parameters[Z0_E_PRM] - Z0_e;
897  *f2 = m_parameters[Z0_O_PRM] - Z0_o;
898 }
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
void calcAnalyze() override
Computation for analysis.

References calcAnalyze(), H_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, PHYS_WIDTH_PRM, Z0_E_PRM, and Z0_O_PRM.

Referenced by calcSynthesize().

◆ synth_width()

void C_MICROSTRIP::synth_width ( )
private

Definition at line 625 of file c_microstrip.cpp.

626 {
627  double Z0, e_r;
628  double w_h_se, w_h_so, w_h, a, ce, co, s_h;
629  double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
630  double eps = 1e-04;
631 
632  f1 = f2 = 0;
633  e_r = m_parameters[EPSILONR_PRM];
634 
635  Z0 = m_parameters[Z0_E_PRM] / 2.0;
636  /* Wheeler formula for single microstrip synthesis */
637  a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
638  w_h_se = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;
639 
640  Z0 = m_parameters[Z0_O_PRM] / 2.0;
641  /* Wheeler formula for single microstrip synthesis */
642  a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
643  w_h_so = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;
644 
645  ce = cosh( 0.5 * M_PI * w_h_se );
646  co = cosh( 0.5 * M_PI * w_h_so );
647  /* first guess at m_parameters[PHYS_S_PRM]/h */
648  s_h = ( 2.0 / M_PI ) * acosh( ( ce + co - 2.0 ) / ( co - ce ) );
649  /* first guess at w/h */
650  w_h = acosh( ( ce * co - 1.0 ) / ( co - ce ) ) / M_PI - s_h / 2.0;
651 
654 
655  syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );
656 
657  /* rather crude Newton-Rhapson; we need this because the estimate of */
658  /* w_h is often quite far from the true value (see Akhtarzad S. et al.) */
659  do
660  {
661  /* compute Jacobian */
662  syn_err_fun( &ft1, &ft2, s_h + eps, w_h, e_r, w_h_se, w_h_so );
663  j11 = ( ft1 - f1 ) / eps;
664  j21 = ( ft2 - f2 ) / eps;
665  syn_err_fun( &ft1, &ft2, s_h, w_h + eps, e_r, w_h_se, w_h_so );
666  j12 = ( ft1 - f1 ) / eps;
667  j22 = ( ft2 - f2 ) / eps;
668 
669  /* compute next step */
670  d_s_h = ( -f1 * j22 + f2 * j12 ) / ( j11 * j22 - j21 * j12 );
671  d_w_h = ( -f2 * j11 + f1 * j21 ) / ( j11 * j22 - j21 * j12 );
672 
673  //g_print("j11 = %e\tj12 = %e\tj21 = %e\tj22 = %e\n", j11, j12, j21, j22);
674  //g_print("det = %e\n", j11*j22 - j21*j22);
675  //g_print("d_s_h = %e\td_w_h = %e\n", d_s_h, d_w_h);
676 
677  s_h += d_s_h;
678  w_h += d_w_h;
679 
680  /* check the error */
681  syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );
682 
683  err = sqrt( f1 * f1 + f2 * f2 );
684  /* converged ? */
685  } while( err > 1e-04 );
686 
687 
690 }
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
double acosh(double x)
Definition: units.h:40
void syn_err_fun(double *, double *, double, double, double, double, double)

References acosh(), EPSILONR_PRM, H_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, PHYS_WIDTH_PRM, syn_err_fun(), Z0_E_PRM, and Z0_O_PRM.

Referenced by calcSynthesize().

◆ synthesize()

void TRANSLINE::synthesize ( )
virtualinherited

Definition at line 228 of file transline.cpp.

229 {
230  getProperties();
231  checkProperties();
232  calcSynthesize();
233  showSynthesize();
234  show_results();
235 }
virtual void calcSynthesize()
Computation for synthesis.
Definition: transline.h:107
virtual void showSynthesize()
Shows analysis results and checks for errors / warnings.
Definition: transline.h:117
virtual void show_results()
Shows results.
Definition: transline.h:122
void checkProperties()
@function checkProperties
Definition: transline.cpp:177
void getProperties()
@function getProperties
Definition: transline.cpp:158

References TRANSLINE::calcSynthesize(), TRANSLINE::checkProperties(), TRANSLINE::getProperties(), TRANSLINE::show_results(), and TRANSLINE::showSynthesize().

Referenced by PANEL_TRANSLINE::OnTranslineSynthetize().

◆ Z0_dispersion()

void C_MICROSTRIP::Z0_dispersion ( )
private

Definition at line 697 of file c_microstrip.cpp.

698 {
699  double Q_0;
700  double Q_11, Q_12, Q_13, Q_14, Q_15, Q_16, Q_17, Q_18, Q_19, Q_20, Q_21;
701  double Q_22, Q_23, Q_24, Q_25, Q_26, Q_27, Q_28, Q_29;
702  double r_e, q_e, p_e, d_e, C_e;
703  double e_r_eff_o_f, e_r_eff_o_0;
704  double e_r_eff_single_f, e_r_eff_single_0, Z0_single_f;
705  double f_n, g, u, e_r;
706  double R_1, R_2, R_7, R_10, R_11, R_12, R_15, R_16, tmpf;
707 
708  e_r = m_parameters[EPSILONR_PRM];
709 
710  u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
711  g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalize line spacing */
712 
713  /* normalized frequency [GHz * mm] */
714  f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
715 
716  e_r_eff_single_f = aux_ms->er_eff;
717  e_r_eff_single_0 = aux_ms->er_eff_0;
718  Z0_single_f = aux_ms->m_parameters[Z0_PRM];
719 
720  e_r_eff_o_f = er_eff_o;
721  e_r_eff_o_0 = er_eff_o_0;
722 
723  Q_11 = 0.893 * ( 1.0 - 0.3 / ( 1.0 + 0.7 * ( e_r - 1.0 ) ) );
724  Q_12 = 2.121 * ( pow( f_n / 20.0, 4.91 ) / ( 1.0 + Q_11 * pow( f_n / 20.0, 4.91 ) ) )
725  * exp( -2.87 * g ) * pow( g, 0.902 );
726  Q_13 = 1.0 + 0.038 * pow( e_r / 8.0, 5.1 );
727  Q_14 = 1.0 + 1.203 * pow( e_r / 15.0, 4.0 ) / ( 1.0 + pow( e_r / 15.0, 4.0 ) );
728  Q_15 = 1.887 * exp( -1.5 * pow( g, 0.84 ) ) * pow( g, Q_14 )
729  / ( 1.0
730  + 0.41 * pow( f_n / 15.0, 3.0 ) * pow( u, 2.0 / Q_13 )
731  / ( 0.125 + pow( u, 1.626 / Q_13 ) ) );
732  Q_16 = ( 1.0 + 9.0 / ( 1.0 + 0.403 * pow( e_r - 1.0, 2 ) ) ) * Q_15;
733  Q_17 = 0.394 * ( 1.0 - exp( -1.47 * pow( u / 7.0, 0.672 ) ) )
734  * ( 1.0 - exp( -4.25 * pow( f_n / 20.0, 1.87 ) ) );
735  Q_18 = 0.61 * ( 1.0 - exp( -2.13 * pow( u / 8.0, 1.593 ) ) ) / ( 1.0 + 6.544 * pow( g, 4.17 ) );
736  Q_19 = 0.21 * g * g * g * g
737  / ( ( 1.0 + 0.18 * pow( g, 4.9 ) ) * ( 1.0 + 0.1 * u * u )
738  * ( 1.0 + pow( f_n / 24.0, 3.0 ) ) );
739  Q_20 = ( 0.09 + 1.0 / ( 1.0 + 0.1 * pow( e_r - 1, 2.7 ) ) ) * Q_19;
740  Q_21 = fabs( 1.0
741  - 42.54 * pow( g, 0.133 ) * exp( -0.812 * g ) * pow( u, 2.5 )
742  / ( 1.0 + 0.033 * pow( u, 2.5 ) ) );
743 
744  r_e = pow( f_n / 28.843, 12 );
745  q_e = 0.016 + pow( 0.0514 * e_r * Q_21, 4.524 );
746  p_e = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
747  d_e = 5.086 * q_e * ( r_e / ( 0.3838 + 0.386 * q_e ) )
748  * ( exp( -22.2 * pow( u, 1.92 ) ) / ( 1.0 + 1.2992 * r_e ) )
749  * ( pow( e_r - 1.0, 6.0 ) / ( 1.0 + 10 * pow( e_r - 1.0, 6.0 ) ) );
750  C_e = 1.0
751  + 1.275
752  * ( 1.0
753  - exp( -0.004625 * p_e * pow( e_r, 1.674 )
754  * pow( f_n / 18.365, 2.745 ) ) )
755  - Q_12 + Q_16 - Q_17 + Q_18 + Q_20;
756 
757 
758  R_1 = 0.03891 * pow( e_r, 1.4 );
759  R_2 = 0.267 * pow( u, 7.0 );
760  R_7 = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
761  R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
762  tmpf = pow( f_n / 19.47, 6.0 );
763  R_11 = tmpf / ( 1.0 + 0.0962 * tmpf );
764  R_12 = 1.0 / ( 1.0 + 0.00245 * u * u );
765  R_15 = 0.707 * R_10 * pow( f_n / 12.3, 1.097 );
766  R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) );
767  Q_0 = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );
768 
769  /* even-mode frequency-dependent characteristic impedances */
770  m_parameters[Z0_E_PRM] = Z0_e_0 * pow( 0.9408 * pow( e_r_eff_single_f, C_e ) - 0.9603, Q_0 )
771  / pow( ( 0.9408 - d_e ) * pow( e_r_eff_single_0, C_e ) - 0.9603, Q_0 );
772 
773  Q_29 = 15.16 / ( 1.0 + 0.196 * pow( e_r - 1.0, 2.0 ) );
774  tmpf = pow( e_r - 1.0, 3.0 );
775  Q_28 = 0.149 * tmpf / ( 94.5 + 0.038 * tmpf );
776  tmpf = pow( e_r - 1.0, 1.5 );
777  Q_27 = 0.4 * pow( g, 0.84 ) * ( 1.0 + 2.5 * tmpf / ( 5.0 + tmpf ) );
778  tmpf = pow( ( e_r - 1.0 ) / 13.0, 12.0 );
779  Q_26 = 30.0 - 22.2 * ( tmpf / ( 1.0 + 3.0 * tmpf ) ) - Q_29;
780  tmpf = ( e_r - 1.0 ) * ( e_r - 1.0 );
781  Q_25 = ( 0.3 * f_n * f_n / ( 10.0 + f_n * f_n ) ) * ( 1.0 + 2.333 * tmpf / ( 5.0 + tmpf ) );
782  Q_24 = 2.506 * Q_28 * pow( u, 0.894 ) * pow( ( 1.0 + 1.3 * u ) * f_n / 99.25, 4.29 )
783  / ( 3.575 + pow( u, 0.894 ) );
784  Q_23 = 1.0
785  + 0.005 * f_n * Q_27
786  / ( ( 1.0 + 0.812 * pow( f_n / 15.0, 1.9 ) ) * ( 1.0 + 0.025 * u * u ) );
787  Q_22 = 0.925 * pow( f_n / Q_26, 1.536 ) / ( 1.0 + 0.3 * pow( f_n / 30.0, 1.536 ) );
788 
789  /* odd-mode frequency-dependent characteristic impedances */
791  Z0_single_f
792  + ( Z0_o_0 * pow( e_r_eff_o_f / e_r_eff_o_0, Q_22 ) - Z0_single_f * Q_23 )
793  / ( 1.0 + Q_24 + pow( 0.46 * g, 2.2 ) * Q_25 );
794 }
double er_eff_o
Definition: c_microstrip.h:57
double er_eff_o_0
Definition: c_microstrip.h:59
double er_eff
Definition: transline.h:133
double er_eff_0
Definition: microstrip.h:48
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96
double Z0_e_0
Definition: c_microstrip.h:47
double Z0_o_0
Definition: c_microstrip.h:48

References aux_ms, EPSILONR_PRM, TRANSLINE::er_eff, MICROSTRIP::er_eff_0, er_eff_o, er_eff_o_0, FREQUENCY_PRM, H_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, PHYS_WIDTH_PRM, Z0_e_0, Z0_E_PRM, Z0_o_0, Z0_O_PRM, and Z0_PRM.

Referenced by calcAnalyze().

◆ Z0_even_odd()

void C_MICROSTRIP::Z0_even_odd ( )
private

Z0_even_odd() - compute the static even- and odd-mode static impedances.

References: Manfred Kirschning and Rolf Jansen, "Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines", IEEE Trans. MTT, vol. 32, no. 1, Jan. 1984

Definition at line 374 of file c_microstrip.cpp.

375 {
376  double er_eff, h2, u_t_e, u_t_o, g, h2h;
377  double Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8, Q_9, Q_10;
378  double delta_Z0_e_0, delta_Z0_o_0, Z0_single, er_eff_single;
379 
380  h2 = m_parameters[H_T_PRM];
381  u_t_e = w_t_e / m_parameters[H_PRM]; /* normalized even-mode line width */
382  u_t_o = w_t_o / m_parameters[H_PRM]; /* normalized odd-mode line width */
383  g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
384  h2h = h2 / m_parameters[H_PRM]; /* normalized cover height */
385 
386  Z0_single = aux_ms->Z0_0;
387  er_eff_single = aux_ms->er_eff_0;
388 
389  /* even-mode */
390  er_eff = er_eff_e_0;
391  Q_1 = 0.8695 * pow( u_t_e, 0.194 );
392  Q_2 = 1.0 + 0.7519 * g + 0.189 * pow( g, 2.31 );
393  Q_3 = 0.1975 + pow( ( 16.6 + pow( ( 8.4 / g ), 6.0 ) ), -0.387 )
394  + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 3.4, 10.0 ) ) ) / 241.0;
395  Q_4 = 2.0 * Q_1
396  / ( Q_2 * ( exp( -g ) * pow( u_t_e, Q_3 ) + ( 2.0 - exp( -g ) ) * pow( u_t_e, -Q_3 ) ) );
397  /* static even-mode impedance */
398  Z0_e_0 = Z0_single * sqrt( er_eff_single / er_eff )
399  / ( 1.0 - sqrt( er_eff_single ) * Q_4 * Z0_single / ZF0 );
400  /* correction for cover */
401  delta_Z0_e_0 = delta_Z0_even_cover( g, u_t_e, h2h ) / sqrt( er_eff );
402 
403  Z0_e_0 = Z0_e_0 - delta_Z0_e_0;
404 
405  /* odd-mode */
406  er_eff = er_eff_o_0;
407  Q_5 = 1.794 + 1.14 * log( 1.0 + 0.638 / ( g + 0.517 * pow( g, 2.43 ) ) );
408  Q_6 = 0.2305 + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 5.8, 10.0 ) ) ) / 281.3
409  + log( 1.0 + 0.598 * pow( g, 1.154 ) ) / 5.1;
410  Q_7 = ( 10.0 + 190.0 * g * g ) / ( 1.0 + 82.3 * g * g * g );
411  Q_8 = exp( -6.5 - 0.95 * log( g ) - pow( g / 0.15, 5.0 ) );
412  Q_9 = log( Q_7 ) * ( Q_8 + 1.0 / 16.5 );
413  Q_10 = ( Q_2 * Q_4 - Q_5 * exp( log( u_t_o ) * Q_6 * pow( u_t_o, -Q_9 ) ) ) / Q_2;
414 
415  /* static odd-mode impedance */
416  Z0_o_0 = Z0_single * sqrt( er_eff_single / er_eff )
417  / ( 1.0 - sqrt( er_eff_single ) * Q_10 * Z0_single / ZF0 );
418  /* correction for cover */
419  delta_Z0_o_0 = delta_Z0_odd_cover( g, u_t_o, h2h ) / sqrt( er_eff );
420 
421  Z0_o_0 = Z0_o_0 - delta_Z0_o_0;
422 }
double er_eff_o_0
Definition: c_microstrip.h:59
double w_t_e
Definition: c_microstrip.h:43
double er_eff
Definition: transline.h:133
double Z0_0
Definition: microstrip.h:45
#define ZF0
Definition: units.h:62
double er_eff_0
Definition: microstrip.h:48
double m_parameters[EXTRA_PRMS_COUNT]
Definition: transline.h:131
MICROSTRIP * aux_ms
Definition: c_microstrip.h:96
double delta_Z0_odd_cover(double, double, double)
delta_Z0_odd_cover() - compute the odd-mode impedance correction for a homogeneous microstrip due to ...
double delta_Z0_even_cover(double, double, double)
delta_Z0_even_cover() - compute the even-mode impedance correction for a homogeneous microstrip due t...
double Z0_e_0
Definition: c_microstrip.h:47
double er_eff_e_0
Definition: c_microstrip.h:58
double w_t_o
Definition: c_microstrip.h:44
double Z0_o_0
Definition: c_microstrip.h:48

References aux_ms, delta_Z0_even_cover(), delta_Z0_odd_cover(), TRANSLINE::er_eff, MICROSTRIP::er_eff_0, er_eff_e_0, er_eff_o_0, H_PRM, H_T_PRM, TRANSLINE::m_parameters, PHYS_S_PRM, w_t_e, w_t_o, MICROSTRIP::Z0_0, Z0_e_0, Z0_o_0, and ZF0.

Referenced by calcAnalyze().

Member Data Documentation

◆ ang_l

double TRANSLINE::ang_l
protectedinherited

Definition at line 134 of file transline.h.

Referenced by TRANSLINE::TRANSLINE().

◆ ang_l_e

double C_MICROSTRIP::ang_l_e
private

Definition at line 54 of file c_microstrip.h.

Referenced by calcSynthesize(), line_angle(), and showAnalyze().

◆ ang_l_o

double C_MICROSTRIP::ang_l_o
private

Definition at line 55 of file c_microstrip.h.

Referenced by calcSynthesize(), line_angle(), and showAnalyze().

◆ atten_cond_e

double C_MICROSTRIP::atten_cond_e
private

Definition at line 62 of file c_microstrip.h.

Referenced by conductor_losses(), and show_results().

◆ atten_cond_o

double C_MICROSTRIP::atten_cond_o
private

Definition at line 64 of file c_microstrip.h.

Referenced by conductor_losses(), and show_results().

◆ atten_dielectric_e

double C_MICROSTRIP::atten_dielectric_e
private

Definition at line 61 of file c_microstrip.h.

Referenced by dielectric_losses(), and show_results().

◆ atten_dielectric_o

double C_MICROSTRIP::atten_dielectric_o
private

Definition at line 63 of file c_microstrip.h.

Referenced by dielectric_losses(), and show_results().

◆ aux_ms

MICROSTRIP* C_MICROSTRIP::aux_ms
private

◆ c_e

double C_MICROSTRIP::c_e
private

Definition at line 52 of file c_microstrip.h.

◆ c_o

double C_MICROSTRIP::c_o
private

Definition at line 53 of file c_microstrip.h.

◆ er_eff

◆ er_eff_e

double C_MICROSTRIP::er_eff_e
private

Definition at line 56 of file c_microstrip.h.

Referenced by calcSynthesize(), er_eff_freq(), line_angle(), and show_results().

◆ er_eff_e_0

double C_MICROSTRIP::er_eff_e_0
private

◆ er_eff_o

double C_MICROSTRIP::er_eff_o
private

Definition at line 57 of file c_microstrip.h.

Referenced by calcSynthesize(), er_eff_freq(), line_angle(), show_results(), and Z0_dispersion().

◆ er_eff_o_0

double C_MICROSTRIP::er_eff_o_0
private

◆ errCol

KIGFX::COLOR4D TRANSLINE::errCol = KIGFX::COLOR4D( 1, 0.63, 0.63, 1 )
inherited

Definition at line 126 of file transline.h.

Referenced by TRANSLINE::setErrorLevel().

◆ h

double C_MICROSTRIP::h
private

Definition at line 38 of file c_microstrip.h.

◆ ht

double C_MICROSTRIP::ht
private

Definition at line 39 of file c_microstrip.h.

◆ l

double C_MICROSTRIP::l
private

Definition at line 45 of file c_microstrip.h.

◆ len

double TRANSLINE::len
protectedinherited

Definition at line 132 of file transline.h.

Referenced by TRANSLINE::TRANSLINE().

◆ m_Name

◆ m_parameters

double TRANSLINE::m_parameters[EXTRA_PRMS_COUNT]
protectedinherited

Definition at line 131 of file transline.h.

Referenced by RECTWAVEGUIDE::alphac(), COAX::alphac_coax(), RECTWAVEGUIDE::alphad(), COAX::alphad_coax(), MICROSTRIP::attenuation(), attenuation(), TWISTEDPAIR::calcAnalyze(), COAX::calcAnalyze(), STRIPLINE::calcAnalyze(), COPLANAR::calcAnalyze(), RECTWAVEGUIDE::calcAnalyze(), TWISTEDPAIR::calcSynthesize(), COPLANAR::calcSynthesize(), COAX::calcSynthesize(), STRIPLINE::calcSynthesize(), RECTWAVEGUIDE::calcSynthesize(), MICROSTRIP::calcSynthesize(), calcSynthesize(), TRANSLINE::checkProperties(), compute_single_line(), MICROSTRIP::conductor_losses(), conductor_losses(), delta_u_thickness(), MICROSTRIP::dielectric_losses(), dielectric_losses(), MICROSTRIP::dispersion(), er_eff_freq(), er_eff_static(), RECTWAVEGUIDE::fc(), RECTWAVEGUIDE::get_rectwaveguide_comp(), RECTWAVEGUIDE::get_rectwaveguide_elec(), RECTWAVEGUIDE::get_rectwaveguide_phys(), RECTWAVEGUIDE::get_rectwaveguide_sub(), TRANSLINE::getProperties(), TRANSLINE::Init(), RECTWAVEGUIDE::kc_square(), RECTWAVEGUIDE::kval_square(), line_angle(), MICROSTRIP::line_angle(), STRIPLINE::lineImpedance(), MICROSTRIP::microstrip_Z0(), TRANSLINE::minimizeZ0Error1D(), MICROSTRIP::mur_eff_ms(), TWISTEDPAIR::show_results(), STRIPLINE::show_results(), COAX::show_results(), COPLANAR::show_results(), RECTWAVEGUIDE::show_results(), MICROSTRIP::show_results(), show_results(), TWISTEDPAIR::showAnalyze(), COAX::showAnalyze(), STRIPLINE::showAnalyze(), COPLANAR::showAnalyze(), RECTWAVEGUIDE::showAnalyze(), MICROSTRIP::showAnalyze(), showAnalyze(), STRIPLINE::showSynthesize(), TWISTEDPAIR::showSynthesize(), COAX::showSynthesize(), COPLANAR::showSynthesize(), RECTWAVEGUIDE::showSynthesize(), MICROSTRIP::showSynthesize(), showSynthesize(), TRANSLINE::skin_depth(), syn_fun(), MICROSTRIP::synth_width(), synth_width(), TRANSLINE::TRANSLINE(), Z0_dispersion(), and Z0_even_odd().

◆ okCol

KIGFX::COLOR4D TRANSLINE::okCol = KIGFX::COLOR4D( 1, 1, 1, 1 )
inherited

Definition at line 128 of file transline.h.

Referenced by TRANSLINE::Init(), and TRANSLINE::setErrorLevel().

◆ rough

double C_MICROSTRIP::rough
private

Definition at line 41 of file c_microstrip.h.

◆ s

double C_MICROSTRIP::s
private

Definition at line 46 of file c_microstrip.h.

◆ t

double C_MICROSTRIP::t
private

Definition at line 40 of file c_microstrip.h.

◆ w

double C_MICROSTRIP::w
private

Definition at line 42 of file c_microstrip.h.

◆ w_eff

double C_MICROSTRIP::w_eff
private

Definition at line 60 of file c_microstrip.h.

◆ w_t_e

double C_MICROSTRIP::w_t_e
private

Definition at line 43 of file c_microstrip.h.

Referenced by delta_u_thickness(), er_eff_static(), and Z0_even_odd().

◆ w_t_o

double C_MICROSTRIP::w_t_o
private

Definition at line 44 of file c_microstrip.h.

Referenced by delta_u_thickness(), er_eff_static(), and Z0_even_odd().

◆ warnCol

KIGFX::COLOR4D TRANSLINE::warnCol = KIGFX::COLOR4D( 1, 1, 0.57, 1 )
inherited

Definition at line 127 of file transline.h.

Referenced by TRANSLINE::setErrorLevel().

◆ Z0_e_0

double C_MICROSTRIP::Z0_e_0
private

Definition at line 47 of file c_microstrip.h.

Referenced by conductor_losses(), Z0_dispersion(), and Z0_even_odd().

◆ Z0_o_0

double C_MICROSTRIP::Z0_o_0
private

Definition at line 48 of file c_microstrip.h.

Referenced by conductor_losses(), diff_impedance(), Z0_dispersion(), and Z0_even_odd().

◆ Z0e

double C_MICROSTRIP::Z0e
private

Definition at line 50 of file c_microstrip.h.

◆ Z0o

double C_MICROSTRIP::Z0o
private

Definition at line 51 of file c_microstrip.h.

◆ Zdiff

double C_MICROSTRIP::Zdiff
private

Definition at line 49 of file c_microstrip.h.

Referenced by diff_impedance(), and show_results().


The documentation for this class was generated from the following files: