KiCad PCB EDA Suite
Loading...
Searching...
No Matches
sim_model_ngspice_data_hicum2.cpp
Go to the documentation of this file.
1
/*
2
* This program source code file is part of KiCad, a free EDA CAD application.
3
*
4
* Copyright (C) 2022 Mikolaj Wielgus
5
* Copyright The KiCad Developers, see AUTHORS.TXT for contributors.
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License
9
* as published by the Free Software Foundation; either version 2
10
* of the License, or (at your option) any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, you may find one here:
19
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20
* or you may search the http://www.gnu.org website for the version 2 license,
21
* or you may write to the Free Software Foundation, Inc.,
22
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23
*/
24
25
#include <
sim/sim_model_ngspice.h
>
26
27
28
void
NGSPICE_MODEL_INFO_MAP::addHICUM2
()
29
{
30
modelInfos
[MODEL_TYPE::HICUM2] = {
"hicum2"
,
"NPN"
,
"PNP"
, {
"C"
,
"B"
,
"E"
,
"S"
,
"TJ"
},
"High Current Model for BJT"
, {}, {} };
31
// Model parameters
32
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"type"
, 305,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_STRING
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"npn"
,
"pnp"
,
"For transistor type NPN(+1) or PNP (-1)"
);
33
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"npn"
, 101,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"NaN"
,
"NaN"
,
"NPN type device"
);
34
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"pnp"
, 102,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"NaN"
,
"NaN"
,
"PNP type device"
);
35
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tnom"
, 103,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"300.15"
,
"300.15"
,
"Temperature at which parameters are specified"
);
36
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tref"
, 103,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"300.15"
,
"300.15"
,
"n.a."
);
37
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"version"
, 104,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_STRING
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2.4.0"
,
"2.4.0"
,
"parameter for model version"
);
38
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"c10"
, 105,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2e-30"
,
"2e-30"
,
"GICCR constant"
);
39
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"qp0"
, 106,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2e-14"
,
"2e-14"
,
"Zero-bias hole charge"
);
40
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ich"
, 107,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"High-current correction for 2D and 3D effects"
);
41
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"hf0"
, 108,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Weight factor for the low current minority charge"
);
42
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"hfe"
, 109,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Emitter minority charge weighting factor in HBTs"
);
43
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"hfc"
, 110,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Collector minority charge weighting factor in HBTs"
);
44
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"hjei"
, 111,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"B-E depletion charge weighting factor in HBTs"
);
45
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ahjei"
, 112,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Parameter describing the slope of hjEi(VBE)"
);
46
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rhjei"
, 113,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Smoothing parameter for hjEi(VBE) at high voltage"
);
47
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"hjci"
, 114,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"B-C depletion charge weighting factor in HBTs"
);
48
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ibeis"
, 115,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-18"
,
"1e-18"
,
"Internal B-E saturation current"
);
49
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mbei"
, 116,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Internal B-E current ideality factor"
);
50
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ireis"
, 117,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Internal B-E recombination saturation current"
);
51
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mrei"
, 118,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2"
,
"2"
,
"Internal B-E recombination current ideality factor"
);
52
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ibeps"
, 119,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Peripheral B-E saturation current"
);
53
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mbep"
, 120,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Peripheral B-E current ideality factor"
);
54
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ireps"
, 121,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Peripheral B-E recombination saturation current"
);
55
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mrep"
, 122,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2"
,
"2"
,
"Peripheral B-E recombination current ideality factor"
);
56
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mcf"
, 123,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Non-ideality factor for III-V HBTs"
);
57
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tbhrec"
, 124,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Base current recombination time constant at B-C barrier for high forward injection"
);
58
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ibcis"
, 125,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-16"
,
"1e-16"
,
"Internal B-C saturation current"
);
59
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mbci"
, 126,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Internal B-C current ideality factor"
);
60
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ibcxs"
, 127,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"External B-C saturation current"
);
61
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"mbcx"
, 128,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"External B-C current ideality factor"
);
62
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ibets"
, 129,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"B-E tunneling saturation current"
);
63
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"abet"
, 130,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"40"
,
"40"
,
"Exponent factor for tunneling current"
);
64
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tunode"
, 131,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Specifies the base node connection for the tunneling current"
);
65
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"favl"
, 132,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Avalanche current factor"
);
66
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"qavl"
, 133,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Exponent factor for avalanche current"
);
67
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"kavl"
, 134,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Flag/factor for turning strong avalanche on"
);
68
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alfav"
, 135,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC for FAVL"
);
69
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alqav"
, 136,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC for QAVL"
);
70
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alkav"
, 137,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC for KAVL"
);
71
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rbi0"
, 138,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Zero bias internal base resistance"
);
72
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rbx"
, 139,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"External base series resistance"
);
73
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fgeo"
, 140,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.6557"
,
"0.6557"
,
"Factor for geometry dependence of emitter current crowding"
);
74
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fdqr0"
, 141,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Correction factor for modulation by B-E and B-C space charge layer"
);
75
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fcrbi"
, 142,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Ratio of HF shunt to total internal capacitance (lateral NQS effect)"
);
76
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fqi"
, 143,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Ration of internal to total minority charge"
);
77
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"re"
, 144,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Emitter series resistance"
);
78
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rcx"
, 145,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"External collector series resistance"
);
79
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"itss"
, 146,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Substrate transistor transfer saturation current"
);
80
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"msf"
, 147,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Forward ideality factor of substrate transfer current"
);
81
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"iscs"
, 148,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"C-S diode saturation current"
);
82
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"msc"
, 149,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Ideality factor of C-S diode current"
);
83
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tsf"
, 150,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Transit time for forward operation of substrate transistor"
);
84
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rsu"
, 151,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Substrate series resistance"
);
85
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"csu"
, 152,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Substrate shunt capacitance"
);
86
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cjei0"
, 153,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-20"
,
"1e-20"
,
"Internal B-E zero-bias depletion capacitance"
);
87
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vdei"
, 154,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.9"
,
"0.9"
,
"Internal B-E built-in potential"
);
88
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zei"
, 155,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"Internal B-E grading coefficient"
);
89
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ajei"
, 156,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2.5"
,
"2.5"
,
"Ratio of maximum to zero-bias value of internal B-E capacitance"
);
90
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"aljei"
, 156,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"2.5"
,
"2.5"
,
"n.a."
);
91
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cjep0"
, 157,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-20"
,
"1e-20"
,
"Peripheral B-E zero-bias depletion capacitance"
);
92
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vdep"
, 158,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.9"
,
"0.9"
,
"Peripheral B-E built-in potential"
);
93
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zep"
, 159,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"Peripheral B-E grading coefficient"
);
94
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ajep"
, 160,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2.5"
,
"2.5"
,
"Ratio of maximum to zero-bias value of peripheral B-E capacitance"
);
95
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"aljep"
, 160,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"2.5"
,
"2.5"
,
"n.a."
);
96
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cjci0"
, 161,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-20"
,
"1e-20"
,
"Internal B-C zero-bias depletion capacitance"
);
97
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vdci"
, 162,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.7"
,
"0.7"
,
"Internal B-C built-in potential"
);
98
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zci"
, 163,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.4"
,
"0.4"
,
"Internal B-C grading coefficient"
);
99
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vptci"
, 164,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"Internal B-C punch-through voltage"
);
100
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cjcx0"
, 165,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-20"
,
"1e-20"
,
"External B-C zero-bias depletion capacitance"
);
101
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vdcx"
, 166,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.7"
,
"0.7"
,
"External B-C built-in potential"
);
102
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zcx"
, 167,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.4"
,
"0.4"
,
"External B-C grading coefficient"
);
103
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vptcx"
, 168,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"External B-C punch-through voltage"
);
104
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fbcpar"
, 169,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Partitioning factor of parasitic B-C cap"
);
105
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fbc"
, 169,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
106
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fbepar"
, 170,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Partitioning factor of parasitic B-E cap"
);
107
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fbe"
, 170,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"1"
,
"1"
,
"n.a."
);
108
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cjs0"
, 171,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"C-S zero-bias depletion capacitance"
);
109
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vds"
, 172,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.6"
,
"0.6"
,
"C-S built-in potential"
);
110
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zs"
, 173,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"C-S grading coefficient"
);
111
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vpts"
, 174,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"C-S punch-through voltage"
);
112
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cscp0"
, 175,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Perimeter S-C zero-bias depletion capacitance"
);
113
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vdsp"
, 176,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.6"
,
"0.6"
,
"Perimeter S-C built-in potential"
);
114
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zsp"
, 177,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"Perimeter S-C grading coefficient"
);
115
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vptsp"
, 178,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"Perimeter S-C punch-through voltage"
);
116
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"t0"
, 179,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Low current forward transit time at VBC=0V"
);
117
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"dt0h"
, 180,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"m"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Time constant for base and B-C space charge layer width modulation"
);
118
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tbvl"
, 181,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Time constant for modeling carrier jam at low VCE"
);
119
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tef0"
, 182,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Neutral emitter storage time"
);
120
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"gtfe"
, 183,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Exponent factor for current dependence of neutral emitter storage time"
);
121
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"thcs"
, 184,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Saturation time constant at high current densities"
);
122
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ahc"
, 185,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.1"
,
"0.1"
,
"Smoothing factor for current dependence of base and collector transit time"
);
123
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alhc"
, 185,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.1"
,
"0.1"
,
"n.a."
);
124
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"fthc"
, 186,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Partitioning factor for base and collector portion"
);
125
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rci0"
, 187,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"150"
,
"150"
,
"Internal collector resistance at low electric field"
);
126
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vlim"
, 188,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"Voltage separating ohmic and saturation velocity regime"
);
127
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vces"
, 189,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.1"
,
"0.1"
,
"Internal C-E saturation voltage"
);
128
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vpt"
, 190,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"Collector punch-through voltage"
);
129
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"aick"
, 191,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.001"
,
"0.001"
,
"Smoothing term for ICK"
);
130
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"delck"
, 192,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2"
,
"2"
,
"Fitting factor for critical current"
);
131
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"tr"
, 193,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Storage time for inverse operation"
);
132
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vcbar"
, 194,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Barrier voltage"
);
133
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"icbar"
, 195,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Normalization parameter"
);
134
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"acbar"
, 196,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.01"
,
"0.01"
,
"Smoothing parameter for barrier voltage"
);
135
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cbepar"
, 197,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Total parasitic B-E capacitance"
);
136
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ceox"
, 197,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
137
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cbcpar"
, 198,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Total parasitic B-C capacitance"
);
138
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"ccox"
, 198,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
139
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alqf"
, 199,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.167"
,
"0.167"
,
"Factor for additional delay time of minority charge"
);
140
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alit"
, 200,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.333"
,
"0.333"
,
"Factor for additional delay time of transfer current"
);
141
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"flnqs"
, 201,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Flag for turning on and off of vertical NQS effect"
);
142
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"kf"
, 202,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Flicker noise coefficient"
);
143
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"af"
, 203,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"2"
,
"2"
,
"Flicker noise exponent factor"
);
144
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cfbe"
, 204,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Flag for determining where to tag the flicker noise source"
);
145
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"flcono"
, 205,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Flag for turning on and off of correlated noise implementation"
);
146
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"kfre"
, 206,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Emitter resistance flicker noise coefficient"
);
147
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"afre"
, 207,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"2"
,
"2"
,
"Emitter resistance flicker noise exponent factor"
);
148
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"latb"
, 208,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"m"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Scaling factor for collector minority charge in direction of emitter width"
);
149
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"latl"
, 209,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"m"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Scaling factor for collector minority charge in direction of emitter length"
);
150
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vgb"
, 210,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.17"
,
"1.17"
,
"Bandgap voltage extrapolated to 0 K"
);
151
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alt0"
, 211,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"First order relative TC of parameter T0"
);
152
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"kt0"
, 212,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Second order relative TC of parameter T0"
);
153
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetaci"
, 213,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature exponent for RCI0"
);
154
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alvs"
, 214,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"m/s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC of saturation drift velocity"
);
155
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alces"
, 215,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC of VCES"
);
156
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetarbi"
, 216,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature exponent of internal base resistance"
);
157
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetarbx"
, 217,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature exponent of external base resistance"
);
158
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetarcx"
, 218,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature exponent of external collector resistance"
);
159
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetare"
, 219,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature exponent of emitter resistance"
);
160
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetacx"
, 220,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"1"
,
"1"
,
"Temperature exponent of mobility in substrate transistor transit time"
);
161
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vge"
, 221,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.17"
,
"1.17"
,
"Effective emitter bandgap voltage"
);
162
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vgc"
, 222,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.17"
,
"1.17"
,
"Effective collector bandgap voltage"
);
163
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vgs"
, 223,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.17"
,
"1.17"
,
"Effective substrate bandgap voltage"
);
164
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"f1vg"
, 224,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"-0.000102377"
,
"-0.000102377"
,
"Coefficient K1 in T-dependent band-gap equation"
);
165
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"f2vg"
, 225,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.00043215"
,
"0.00043215"
,
"Coefficient K2 in T-dependent band-gap equation"
);
166
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetact"
, 226,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"3"
,
"3"
,
"Exponent coefficient in transfer current temperature dependence"
);
167
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetabet"
, 227,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"3.5"
,
"3.5"
,
"Exponent coefficient in B-E junction current temperature dependence"
);
168
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alb"
, 228,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Relative TC of forward current gain for V2.1 model"
);
169
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"dvgbe"
, 229,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Bandgap difference between B and B-E junction used for hjEi0 and hf0"
);
170
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetahjei"
, 230,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"1"
,
"1"
,
"Temperature coefficient for ahjEi"
);
171
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetavgbe"
, 231,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"1"
,
"1"
,
"Temperature coefficient for hjEi0"
);
172
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"flsh"
, 232,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Flag for turning on and off self-heating effect"
);
173
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"rth"
, 233,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Thermal resistance"
);
174
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"zetarth"
, 234,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature coefficient for Rth"
);
175
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"alrth"
, 235,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"First order relative TC of parameter Rth"
);
176
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"cth"
, 236,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Thermal capacitance"
);
177
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"flcomp"
, 237,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Flag for compatibility with v2.1 model (0=v2.1)"
);
178
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vbe_max"
, 238,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage B-E junction"
);
179
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vbc_max"
, 239,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage B-C junction"
);
180
modelInfos
[MODEL_TYPE::HICUM2].modelParams.emplace_back(
"vce_max"
, 240,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage C-E branch"
);
181
// Instance parameters
182
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"area"
, 1,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Area factor"
,
true
);
183
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"off"
, 2,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Device initially off"
,
true
);
184
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ic"
, 3,
SIM_MODEL::PARAM::DIR_IN
,
SIM_VALUE::TYPE_FLOAT_VECTOR
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Initial condition vector"
,
true
);
185
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"m"
, 6,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
,
""
,
""
,
"Multiplier"
,
true
);
186
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"temp"
, 4,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::PRINCIPAL
,
""
,
""
,
"Instance temperature"
,
true
);
187
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"dt"
, 5,
SIM_MODEL::PARAM::DIR_IN
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Instance delta temperature"
,
true
);
188
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"tk"
, 264,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Actual device temperature"
,
true
);
189
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"dtsh"
, 265,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Temperature increase due to self-heating"
,
true
);
190
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"it"
, 284,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"transfer current"
,
true
);
191
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"collnode"
, 251,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of collector node"
,
true
);
192
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"basenode"
, 252,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of base node"
,
true
);
193
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"emitnode"
, 253,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of emitter node"
,
true
);
194
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"subsnode"
, 254,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of substrate node"
,
true
);
195
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"tempnode"
, 255,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of temperature node"
,
true
);
196
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"collcinode"
, 256,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal collector node"
,
true
);
197
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"basebpnode"
, 257,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External base node"
,
true
);
198
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"basebinode"
, 258,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base node"
,
true
);
199
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"emiteinode"
, 259,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal emitter node"
,
true
);
200
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"subssinode"
, 260,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal substrate node"
,
true
);
201
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"xfnode"
, 261,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal phase node xf"
,
true
);
202
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"xf1node"
, 262,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal phase node xf1"
,
true
);
203
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"xf2node"
, 263,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal phase node xf2"
,
true
);
204
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbe"
, 266,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External BE voltage"
,
true
);
205
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbbp"
, 267,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"BBP voltage"
,
true
);
206
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbc"
, 268,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External BC voltage"
,
true
);
207
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vce"
, 269,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External CE voltage"
,
true
);
208
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vsc"
, 270,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External SC voltage"
,
true
);
209
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbiei"
, 271,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal BE voltage"
,
true
);
210
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbpbi"
, 272,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Peripheral Base to internal Base voltage"
,
true
);
211
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vbici"
, 273,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal BC voltage"
,
true
);
212
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"vciei"
, 274,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal CE voltage"
,
true
);
213
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ic"
, 275,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Collector current"
,
true
);
214
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"iavl"
, 276,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Avalanche current"
,
true
);
215
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ib"
, 277,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Base current"
,
true
);
216
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ibei"
, 280,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Intenral Base Emitter current"
,
true
);
217
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ibci"
, 281,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal Base Collector current"
,
true
);
218
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ie"
, 278,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Emitter current"
,
true
);
219
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"is"
, 279,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Substrate current"
,
true
);
220
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rcx_t"
, 282,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External (saturated) collector series resistance"
,
true
);
221
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"re_t"
, 283,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Emitter series resistance"
,
true
);
222
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rbi"
, 285,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base resistance as calculated in the model"
,
true
);
223
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rb"
, 286,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total base resistance as calculated in the model"
,
true
);
224
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"betadc"
, 287,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Common emitter forward current gain"
,
true
);
225
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"gmi"
, 288,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal transconductance"
,
true
);
226
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"gms"
, 289,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Transconductance of the parasitic substrate PNP"
,
true
);
227
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rpii"
, 290,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base-emitter (input) resistance"
,
true
);
228
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rpix"
, 291,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External base-emitter (input) resistance"
,
true
);
229
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rmui"
, 292,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal feedback resistance"
,
true
);
230
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"rmux"
, 293,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"External feedback resistance"
,
true
);
231
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"roi"
, 294,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"ohm"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Output resistance"
,
true
);
232
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"cpii"
, 295,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total internal BE capacitance"
,
true
);
233
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"cpix"
, 296,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total external BE capacitance"
,
true
);
234
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"cmui"
, 297,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total internal BC capacitance"
,
true
);
235
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"cmux"
, 298,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total external BC capacitance"
,
true
);
236
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ccs"
, 299,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"CS junction capacitance"
,
true
);
237
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"betaac"
, 300,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Small signal current gain"
,
true
);
238
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"crbi"
, 301,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Shunt capacitance across RBI as calculated in the model"
,
true
);
239
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"tf"
, 302,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Forward transit time"
,
true
);
240
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ft"
, 303,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"Hz"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Transit frequency"
,
true
);
241
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"ick"
, 304,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"Hz"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Transit frequency"
,
true
);
242
modelInfos
[MODEL_TYPE::HICUM2].instanceParams.emplace_back(
"p"
, 305,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Power dissipation"
,
true
);
243
}
SIM_VALUE::TYPE_BOOL
@ TYPE_BOOL
Definition:
sim_value.h:67
SIM_VALUE::TYPE_FLOAT_VECTOR
@ TYPE_FLOAT_VECTOR
Definition:
sim_value.h:75
SIM_VALUE::TYPE_INT
@ TYPE_INT
Definition:
sim_value.h:68
SIM_VALUE::TYPE_FLOAT
@ TYPE_FLOAT
Definition:
sim_value.h:69
SIM_VALUE::TYPE_STRING
@ TYPE_STRING
Definition:
sim_value.h:71
sim_model_ngspice.h
NGSPICE_MODEL_INFO_MAP::addHICUM2
void addHICUM2()
Definition:
sim_model_ngspice_data_hicum2.cpp:28
NGSPICE_MODEL_INFO_MAP::modelInfos
std::unordered_map< MODEL_TYPE, MODEL_INFO > modelInfos
Definition:
sim_model_ngspice.h:123
SIM_MODEL::PARAM::DIR_OUT
@ DIR_OUT
Definition:
sim_model.h:320
SIM_MODEL::PARAM::DIR_IN
@ DIR_IN
Definition:
sim_model.h:319
SIM_MODEL::PARAM::DIR_INOUT
@ DIR_INOUT
Definition:
sim_model.h:321
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
@ LIMITING_VALUES
SIM_MODEL::PARAM::CATEGORY::NOISE
@ NOISE
SIM_MODEL::PARAM::CATEGORY::PRINCIPAL
@ PRINCIPAL
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
@ GEOMETRY
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
@ TEMPERATURE
SIM_MODEL::PARAM::CATEGORY::DC
@ DC
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
@ SUPERFLUOUS
src
eeschema
sim
sim_model_ngspice_data_hicum2.cpp
Generated on Wed Jan 22 2025 00:04:53 for KiCad PCB EDA Suite by
1.9.6