KiCad PCB EDA Suite
Loading...
Searching...
No Matches
sim_model_ngspice_data_bjt.cpp
Go to the documentation of this file.
1
/*
2
* This program source code file is part of KiCad, a free EDA CAD application.
3
*
4
* Copyright (C) 2022 Mikolaj Wielgus
5
* Copyright The KiCad Developers, see AUTHORS.TXT for contributors.
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License
9
* as published by the Free Software Foundation; either version 2
10
* of the License, or (at your option) any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, you may find one here:
19
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20
* or you may search the http://www.gnu.org website for the version 2 license,
21
* or you may write to the Free Software Foundation, Inc.,
22
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23
*/
24
25
#include <
sim/sim_model_ngspice.h
>
26
27
28
void
NGSPICE_MODEL_INFO_MAP::addBJT
()
29
{
30
modelInfos
[MODEL_TYPE::BJT] = {
"BJT"
,
"NPN"
,
"PNP"
, {
"C"
,
"B"
,
"E"
,
"<S>"
},
"Bipolar Junction Transistor"
, {}, {} };
31
// Model parameters
32
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"type"
, 309,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_STRING
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"npn"
,
"pnp"
,
"NPN or PNP"
);
33
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"npn"
, 101,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"NaN"
,
"NaN"
,
"NPN type device"
);
34
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"pnp"
, 102,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"NaN"
,
"NaN"
,
"PNP type device"
);
35
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"subs"
, 204,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"-1721368256"
,
"-514428616"
,
"Vertical or Lateral device"
);
36
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnom"
, 151,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"27"
,
"27"
,
"Parameter measurement temperature"
);
37
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tref"
, 151,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"27"
,
"27"
,
"n.a."
);
38
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"is_"
, 103,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-16"
,
"1e-16"
,
"Saturation Current"
);
39
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ibe"
, 104,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Base-Emitter saturation Current"
);
40
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ibc"
, 105,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Base-Collector saturation Current"
);
41
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"bf"
, 106,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"100"
,
"100"
,
"Ideal forward beta"
);
42
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"nf"
, 107,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Forward emission coefficient"
);
43
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vaf"
, 108,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Forward Early voltage"
);
44
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"va"
, 108,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
45
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ikf"
, 109,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Forward beta roll-off corner current"
);
46
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ik"
, 109,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
47
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ise"
, 110,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"B-E leakage saturation current"
);
48
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"c2"
, 110,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
49
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ne"
, 111,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.5"
,
"1.5"
,
"B-E leakage emission coefficient"
);
50
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"br"
, 112,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Ideal reverse beta"
);
51
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"nr"
, 113,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Reverse emission coefficient"
);
52
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"var"
, 114,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Reverse Early voltage"
);
53
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vb"
, 114,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
54
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ikr"
, 115,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"reverse beta roll-off corner current"
);
55
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"isc"
, 116,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"B-C leakage saturation current"
);
56
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"c4"
, 116,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
57
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"nc"
, 117,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"2"
,
"2"
,
"B-C leakage emission coefficient"
);
58
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"rb"
, 118,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Zero bias base resistance"
);
59
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"irb"
, 119,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Current for base resistance=(rb+rbm)/2"
);
60
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"rbm"
, 120,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Minimum base resistance"
);
61
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"re"
, 121,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Emitter resistance"
);
62
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"rc"
, 122,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Collector resistance"
);
63
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cje"
, 123,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::CAPACITANCE
,
"0"
,
"0"
,
"Zero bias B-E depletion capacitance"
);
64
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vje"
, 124,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.75"
,
"0.75"
,
"B-E built in potential"
);
65
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"pe"
, 124,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.75"
,
"0.75"
,
"B-E built in potential"
);
66
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"mje"
, 125,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.33"
,
"0.33"
,
"B-E junction grading coefficient"
);
67
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"me"
, 125,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.33"
,
"0.33"
,
"B-E junction grading coefficient"
);
68
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tf"
, 126,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Ideal forward transit time"
);
69
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"xtf"
, 127,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Coefficient for bias dependence of TF"
);
70
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vtf"
, 128,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Voltage giving VBC dependence of TF"
);
71
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"itf"
, 129,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"High current dependence of TF"
);
72
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ptf"
, 130,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"deg"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Excess phase"
);
73
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cjc"
, 131,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::CAPACITANCE
,
"0"
,
"0"
,
"Zero bias B-C depletion capacitance"
);
74
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vjc"
, 132,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.75"
,
"0.75"
,
"B-C built in potential"
);
75
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"pc"
, 132,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.75"
,
"0.75"
,
"B-C built in potential"
);
76
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"mjc"
, 133,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.33"
,
"0.33"
,
"B-C junction grading coefficient"
);
77
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"mc"
, 133,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.33"
,
"0.33"
,
"B-C junction grading coefficient"
);
78
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"xcjc"
, 134,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Fraction of B-C cap to internal base"
);
79
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tr"
, 135,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Ideal reverse transit time"
);
80
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cjs"
, 136,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::CAPACITANCE
,
"0"
,
"0"
,
"Zero bias Substrate capacitance"
);
81
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"csub_"
, 136,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"Zero bias Substrate capacitance"
);
82
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ccs"
, 136,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"Zero bias Substrate capacitance"
);
83
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vjs"
, 137,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.75"
,
"0.75"
,
"Substrate junction built in potential"
);
84
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ps"
, 137,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.75"
,
"0.75"
,
"Substrate junction built in potential"
);
85
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"mjs"
, 138,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Substrate junction grading coefficient"
);
86
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ms"
, 138,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"Substrate junction grading coefficient"
);
87
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"xtb"
, 139,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Forward and reverse beta temp. exp."
);
88
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"eg"
, 140,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"eV"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.11"
,
"1.11"
,
"Energy gap for IS temp. dependency"
);
89
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"xti"
, 141,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"3"
,
"3"
,
"Temp. exponent for IS"
);
90
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"fc"
, 142,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"Forward bias junction fit parameter"
);
91
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"kf"
, 144,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Flicker Noise Coefficient"
);
92
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"af"
, 143,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::NOISE
,
"0"
,
"0"
,
"Flicker Noise Exponent"
);
93
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"invearlyvoltf"
, 301,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Inverse early voltage:forward"
);
94
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"invearlyvoltr"
, 302,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Inverse early voltage:reverse"
);
95
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"invrollofff"
, 303,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Inverse roll off - forward"
);
96
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"invrolloffr"
, 304,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Inverse roll off - reverse"
);
97
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"collectorconduct"
, 305,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Collector conductance"
);
98
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"emitterconduct"
, 306,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Emitter conductance"
);
99
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"transtimevbcfact"
, 307,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"s"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Transit time VBC factor"
);
100
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"excessphasefactor"
, 308,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"deg"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Excess phase fact."
);
101
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"iss"
, 145,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Substrate Jct. Saturation Current"
);
102
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ns"
, 146,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1"
,
"1"
,
"Substrate current emission coefficient"
);
103
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"rco"
, 147,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.01"
,
"0.01"
,
"Intrinsic coll. resistance"
);
104
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vo"
, 148,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"10"
,
"10"
,
"Epi drift saturation voltage"
);
105
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"gamma"
, 149,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1e-11"
,
"1e-11"
,
"Epi doping parameter"
);
106
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"qco"
, 150,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"C"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0"
,
"0"
,
"Epi Charge parameter"
);
107
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tlev"
, 152,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature equation selector"
);
108
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tlevc"
, 153,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature equation selector"
);
109
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tbf1"
, 154,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"BF 1. temperature coefficient"
);
110
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tbf2"
, 155,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"BF 2. temperature coefficient"
);
111
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tbr1"
, 156,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"BR 1. temperature coefficient"
);
112
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tbr2"
, 157,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"BR 2. temperature coefficient"
);
113
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tikf1"
, 158,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IKF 1. temperature coefficient"
);
114
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tikf2"
, 159,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IKF 2. temperature coefficient"
);
115
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tikr1"
, 160,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IKR 1. temperature coefficient"
);
116
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tikr2"
, 161,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IKR 2. temperature coefficient"
);
117
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tirb1"
, 162,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IRB 1. temperature coefficient"
);
118
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tirb2"
, 163,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IRB 2. temperature coefficient"
);
119
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnc1"
, 164,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NC 1. temperature coefficient"
);
120
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnc2"
, 165,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NC 2. temperature coefficient"
);
121
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tne1"
, 166,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NE 1. temperature coefficient"
);
122
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tne2"
, 167,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NE 2. temperature coefficient"
);
123
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnf1"
, 168,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NF 1. temperature coefficient"
);
124
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnf2"
, 169,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NF 2. temperature coefficient"
);
125
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnr1"
, 170,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NR 1. temperature coefficient"
);
126
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tnr2"
, 171,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NR 2. temperature coefficient"
);
127
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trb1"
, 172,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RB 1. temperature coefficient"
);
128
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trb"
, 172,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
129
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trb2"
, 173,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RB 2. temperature coefficient"
);
130
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trc1"
, 174,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RC 1. temperature coefficient"
);
131
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trc"
, 174,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
132
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trc2"
, 175,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RC 2. temperature coefficient"
);
133
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tre1"
, 176,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RE 1. temperature coefficient"
);
134
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tre"
, 176,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"n.a."
);
135
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tre2"
, 177,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RE 2. temperature coefficient"
);
136
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trm1"
, 178,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RBM 1. temperature coefficient"
);
137
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"trm2"
, 179,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"RBM 2. temperature coefficient"
);
138
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvaf1"
, 180,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VAF 1. temperature coefficient"
);
139
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvaf2"
, 181,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VAF 2. temperature coefficient"
);
140
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvar1"
, 182,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VAR 1. temperature coefficient"
);
141
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvar2"
, 183,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VAR 2. temperature coefficient"
);
142
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ctc"
, 184,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"CJC temperature coefficient"
);
143
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cte"
, 185,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"CJE temperature coefficient"
);
144
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cts"
, 186,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"CJS temperature coefficient"
);
145
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvjc"
, 187,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VJC temperature coefficient"
);
146
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvje"
, 188,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VJE temperature coefficient"
);
147
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tvjs"
, 189,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"VJS temperature coefficient"
);
148
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"titf1"
, 190,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ITF 1. temperature coefficient"
);
149
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"titf2"
, 191,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ITF 2. temperature coefficient"
);
150
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ttf1"
, 192,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"TF 1. temperature coefficient"
);
151
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ttf2"
, 193,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"TF 2. temperature coefficient"
);
152
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ttr1"
, 194,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"TR 1. temperature coefficient"
);
153
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ttr2"
, 195,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"TR 2. temperature coefficient"
);
154
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmje1"
, 196,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJE 1. temperature coefficient"
);
155
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmje2"
, 197,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJE 2. temperature coefficient"
);
156
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmjc1"
, 198,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJC 1. temperature coefficient"
);
157
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmjc2"
, 199,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJC 2. temperature coefficient"
);
158
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmjs1"
, 200,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJS 1. temperature coefficient"
);
159
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tmjs2"
, 201,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"MJS 2. temperature coefficient"
);
160
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tns1"
, 202,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NS 1. temperature coefficient"
);
161
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tns2"
, 203,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"NS 2. temperature coefficient"
);
162
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"nkf"
, 205,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"0.5"
,
"0.5"
,
"NKF High current beta rolloff exponent"
);
163
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"nk"
, 205,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0.5"
,
"0.5"
,
"n.a."
);
164
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tis1"
, 206,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IS 1. temperature coefficient"
);
165
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tis2"
, 207,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"IS 2. temperature coefficient"
);
166
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tise1"
, 208,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISE 1. temperature coefficient"
);
167
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tise2"
, 209,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISE 2. temperature coefficient"
);
168
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tisc1"
, 210,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISC 1. temperature coefficient"
);
169
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tisc2"
, 211,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISC 2. temperature coefficient"
);
170
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tiss1"
, 212,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISS 1. temperature coefficient"
);
171
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"tiss2"
, 213,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"ISS 2. temperature coefficient"
);
172
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"quasimod"
, 214,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"Temperature equation selector"
);
173
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vg"
, 215,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"eV"
,
SIM_MODEL::PARAM::CATEGORY::DC
,
"1.206"
,
"1.206"
,
"Energy gap for QS temp. dependency"
);
174
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"cn"
, 216,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"2.42"
,
"2.2"
,
"Temperature exponent of RCI"
);
175
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"d"
, 217,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0.87"
,
"0.52"
,
"Temperature exponent of VO"
);
176
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vbe_max"
, 218,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage B-E junction"
);
177
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vbc_max"
, 219,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage B-C junction"
);
178
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"vce_max"
, 220,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum voltage C-E branch"
);
179
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"pd_max"
, 221,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum device power dissipation"
);
180
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ic_max"
, 222,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum collector current"
);
181
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"ib_max"
, 223,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum base current"
);
182
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"te_max"
, 224,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
,
"1e+99"
,
"1e+99"
,
"maximum temperature"
);
183
modelInfos
[MODEL_TYPE::BJT].modelParams.emplace_back(
"rth0"
, 225,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"Ω"
,
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
,
"0"
,
"0"
,
"thermal resistance juntion to ambient"
);
184
// Instance parameters
185
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"off"
, 2,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Device initially off"
,
true
);
186
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"icvbe"
, 3,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Initial B-E voltage"
,
true
);
187
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"icvce"
, 4,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Initial C-E voltage"
,
true
);
188
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"m"
, 9,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
,
""
,
""
,
"Parallel Multiplier"
,
true
);
189
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"area"
, 1,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
,
""
,
""
,
"(Emitter) Area factor"
,
true
);
190
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"areab"
, 10,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
,
""
,
""
,
"Base area factor"
,
true
);
191
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"areac"
, 11,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
,
""
,
""
,
"Collector area factor"
,
true
);
192
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"ic"
, 5,
SIM_MODEL::PARAM::DIR_IN
,
SIM_VALUE::TYPE_FLOAT_VECTOR
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Initial condition vector"
,
true
);
193
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_area"
, 6,
SIM_MODEL::PARAM::DIR_IN
,
SIM_VALUE::TYPE_BOOL
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"flag to request sensitivity WRT area"
,
true
);
194
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"colnode"
, 212,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of collector node"
,
true
);
195
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"basenode"
, 213,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of base node"
,
true
);
196
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"emitnode"
, 214,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of emitter node"
,
true
);
197
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"substnode"
, 215,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Number of substrate node"
,
true
);
198
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"colprimenode"
, 217,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal collector node"
,
true
);
199
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"baseprimenode"
, 218,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base node"
,
true
);
200
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"emitprimenode"
, 219,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_INT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal emitter node"
,
true
);
201
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"ic"
, 222,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Current at collector node"
,
true
);
202
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"ib"
, 223,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Current at base node"
,
true
);
203
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"ie"
, 247,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Emitter current"
,
true
);
204
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"is"
, 248,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"A"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"1e-16"
,
"1e-16"
,
"Substrate current"
,
true
);
205
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"vbe"
, 220,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"B-E voltage"
,
true
);
206
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"vbc"
, 221,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"V"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"B-C voltage"
,
true
);
207
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gm"
, 226,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Small signal transconductance"
,
true
);
208
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gpi"
, 224,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Small signal input conductance - pi"
,
true
);
209
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gmu"
, 225,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Small signal conductance - mu"
,
true
);
210
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gx"
, 236,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Conductance from base to internal base"
,
true
);
211
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"go"
, 227,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Small signal output conductance"
,
true
);
212
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"geqcb"
, 238,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"d(Ibe)/d(Vbc)"
,
true
);
213
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gcsub"
, 239,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal Subs. cap. equiv. cond."
,
true
);
214
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"gdsub"
, 254,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal Subs. Diode equiv. cond."
,
true
);
215
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"geqbx"
, 240,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal C-B-base cap. equiv. cond."
,
true
);
216
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cpi"
, 250,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base to emitter capacitance"
,
true
);
217
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cmu"
, 251,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Internal base to collector capacitance"
,
true
);
218
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cbx"
, 252,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Base to collector capacitance"
,
true
);
219
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"csub"
, 253,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
"0"
,
"0"
,
"Substrate capacitance"
,
true
);
220
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cqbe"
, 229,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Cap. due to charge storage in B-E jct."
,
true
);
221
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cqbc"
, 231,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Cap. due to charge storage in B-C jct."
,
true
);
222
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cqsub"
, 233,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Cap. due to charge storage in Subs. jct."
,
true
);
223
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cqbx"
, 235,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Cap. due to charge storage in B-X jct."
,
true
);
224
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"cexbc"
, 237,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
"F"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Total Capacitance in B-X junction"
,
true
);
225
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"qbe"
, 228,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Charge storage B-E junction"
,
true
);
226
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"qbc"
, 230,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Charge storage B-C junction"
,
true
);
227
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"qsub"
, 232,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Charge storage Subs. junction"
,
true
);
228
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"qbx"
, 234,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Charge storage B-X junction"
,
true
);
229
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"p"
, 249,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"Power dissipation"
,
true
);
230
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_dc"
, 246,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"dc sensitivity"
,
true
);
231
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_real"
, 241,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"real part of ac sensitivity"
,
true
);
232
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_imag"
, 242,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"dc sens. & imag part of ac sens."
,
true
);
233
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_mag"
, 243,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"sensitivity of ac magnitude"
,
true
);
234
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_ph"
, 244,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_FLOAT
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"sensitivity of ac phase"
,
true
);
235
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"sens_cplx"
, 245,
SIM_MODEL::PARAM::DIR_OUT
,
SIM_VALUE::TYPE_COMPLEX
,
""
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"ac sensitivity"
,
true
);
236
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"temp"
, 7,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::PRINCIPAL
,
""
,
""
,
"instance temperature"
,
true
);
237
modelInfos
[MODEL_TYPE::BJT].instanceParams.emplace_back(
"dtemp"
, 8,
SIM_MODEL::PARAM::DIR_INOUT
,
SIM_VALUE::TYPE_FLOAT
,
"°C"
,
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
,
""
,
""
,
"instance temperature delta from circuit"
,
true
);
238
}
SIM_VALUE::TYPE_BOOL
@ TYPE_BOOL
Definition:
sim_value.h:67
SIM_VALUE::TYPE_FLOAT_VECTOR
@ TYPE_FLOAT_VECTOR
Definition:
sim_value.h:75
SIM_VALUE::TYPE_INT
@ TYPE_INT
Definition:
sim_value.h:68
SIM_VALUE::TYPE_FLOAT
@ TYPE_FLOAT
Definition:
sim_value.h:69
SIM_VALUE::TYPE_STRING
@ TYPE_STRING
Definition:
sim_value.h:71
SIM_VALUE::TYPE_COMPLEX
@ TYPE_COMPLEX
Definition:
sim_value.h:70
sim_model_ngspice.h
NGSPICE_MODEL_INFO_MAP::addBJT
void addBJT()
Definition:
sim_model_ngspice_data_bjt.cpp:28
NGSPICE_MODEL_INFO_MAP::modelInfos
std::unordered_map< MODEL_TYPE, MODEL_INFO > modelInfos
Definition:
sim_model_ngspice.h:123
SIM_MODEL::PARAM::DIR_OUT
@ DIR_OUT
Definition:
sim_model.h:320
SIM_MODEL::PARAM::DIR_IN
@ DIR_IN
Definition:
sim_model.h:319
SIM_MODEL::PARAM::DIR_INOUT
@ DIR_INOUT
Definition:
sim_model.h:321
SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES
@ LIMITING_VALUES
SIM_MODEL::PARAM::CATEGORY::NOISE
@ NOISE
SIM_MODEL::PARAM::CATEGORY::PRINCIPAL
@ PRINCIPAL
SIM_MODEL::PARAM::CATEGORY::GEOMETRY
@ GEOMETRY
SIM_MODEL::PARAM::CATEGORY::TEMPERATURE
@ TEMPERATURE
SIM_MODEL::PARAM::CATEGORY::DC
@ DC
SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS
@ SUPERFLUOUS
SIM_MODEL::PARAM::CATEGORY::CAPACITANCE
@ CAPACITANCE
src
eeschema
sim
sim_model_ngspice_data_bjt.cpp
Generated on Wed Jan 22 2025 00:04:53 for KiCad PCB EDA Suite by
1.9.6