KiCad PCB EDA Suite
MODEL_INFO_MAP Struct Reference

Public Types

using MODEL_TYPE = SIM_MODEL_NGSPICE::MODEL_TYPE
 
using MODEL_INFO = SIM_MODEL_NGSPICE::MODEL_INFO
 

Public Member Functions

 MODEL_INFO_MAP ()
 

Public Attributes

std::unordered_map< MODEL_TYPE, MODEL_INFOmodelInfos
 

Detailed Description

Definition at line 34 of file sim_model_ngspice_data.cpp.

Member Typedef Documentation

◆ MODEL_INFO

using MODEL_INFO_MAP::MODEL_INFO = SIM_MODEL_NGSPICE::MODEL_INFO

Definition at line 37 of file sim_model_ngspice_data.cpp.

◆ MODEL_TYPE

using MODEL_INFO_MAP::MODEL_TYPE = SIM_MODEL_NGSPICE::MODEL_TYPE

Definition at line 36 of file sim_model_ngspice_data.cpp.

Constructor & Destructor Documentation

◆ MODEL_INFO_MAP()

MODEL_INFO_MAP::MODEL_INFO_MAP ( )
inline

Definition at line 41 of file sim_model_ngspice_data.cpp.

42 {
44 /*modelInfos[MODEL_TYPE::SWITCH] = { "Switch", "SW", "", { "+", "-", "Ctrl+", "Ctrl-" }, "Ideal voltage controlled switch", {}, {} };
45 // Model parameters
46 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "sw", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "", "Switch model" );
47 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "vt", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "0", "", "Threshold voltage" );
48 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "vh", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "0", "", "Hysteresis voltage" );
49 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "ron", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1", "", "Resistance when closed" );
50 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "gon", 106, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1", "", "Conductance when closed" );
51 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "roff", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1e+12", "", "Resistance when open" );
52 modelInfos[MODEL_TYPE::SWITCH].modelParams.emplace_back( "goff", 107, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1e-12", "", "Conductance when open" );
53 // Instance parameters
54 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "on", 1, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Switch initially closed", true );
55 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Switch initially open", true );
56 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "pos_node", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Positive node of switch", true );
57 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "neg_node", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Negative node of switch", true );
58 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "cont_p_node", 5, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Positive contr. node of switch", true );
59 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "cont_n_node", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Positive contr. node of switch", true );
60 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "i", 7, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Switch current", true );
61 modelInfos[MODEL_TYPE::SWITCH].instanceParams.emplace_back( "p", 8, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Switch power", true );
62
63 modelInfos[MODEL_TYPE::CSWITCH] = { "CSwitch", "CSW", "", { "+", "-", "Ctrl+", "Ctrl-" }, "Current controlled ideal switch", {}, {} };
64 // Model parameters
65 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "csw", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "", "Current controlled switch model" );
66 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "it", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "0", "", "Threshold current" );
67 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "ih", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "0", "", "Hysterisis current" );
68 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "ron", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1", "", "Closed resistance" );
69 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "roff", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "1e+12", "", "Open resistance" );
70 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "gon", 106, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Closed conductance" );
71 modelInfos[MODEL_TYPE::CSWITCH].modelParams.emplace_back( "goff", 107, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Open conductance" );
72 // Instance parameters
73 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "control", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_STRING /SIM_VALUE::TYPE::INSTANCE/, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Name of controlling source", true );
74 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "on", 2, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initially closed", true );
75 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "off", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initially open", true );
76 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "pos_node", 4, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Positive node of switch", true );
77 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "neg_node", 5, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Negative node of switch", true );
78 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "i", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Switch current", true );
79 modelInfos[MODEL_TYPE::CSWITCH].instanceParams.emplace_back( "p", 7, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instantaneous power", true );*/
80
81
82 modelInfos[MODEL_TYPE::DIODE] = { "Diode", "D", "", { "A", "K" }, "Junction Diode model", {}, {} };
83 // Model parameters
84 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "level", 100, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1", "", "Diode level selector" );
85 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "is", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "", "Saturation current" );
86 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "js", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "", "n.a." );
87 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "jsw", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Sidewall Saturation current" );
88 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tnom", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "", "Parameter measurement temperature" );
89 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tref", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "", "Parameter measurement temperature" );
90 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "rs", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Ohmic resistance" );
91 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "trs", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Ohmic resistance 1st order temp. coeff." );
92 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "trs1", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "n.a." );
93 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "trs2", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Ohmic resistance 2nd order temp. coeff." );
94 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "n", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Emission Coefficient" );
95 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ns", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Sidewall emission Coefficient" );
96 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tt", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Transit Time" );
97 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ttt1", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Transit Time 1st order temp. coeff." );
98 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ttt2", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Transit Time 2nd order temp. coeff." );
99 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cjo", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "", "Junction capacitance" );
100 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cj0", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "Junction capacitance" );
101 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cj", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "Junction capacitance" );
102 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "vj", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Junction potential" );
103 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "pb", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1", "", "n.a." );
104 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "m_", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "", "Grading coefficient" );
105 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "mj", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.5", "", "n.a." );
106 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tm1", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/°C²", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Grading coefficient 1st temp. coeff." );
107 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tm2", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Grading coefficient 2nd temp. coeff." );
108 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cjp", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "", "Sidewall junction capacitance" );
109 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cjsw", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "n.a." );
110 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "php", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Sidewall junction potential" );
111 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "mjsw", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "", "Sidewall Grading coefficient" );
112 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ikf", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Forward Knee current" );
113 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ik", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "n.a." );
114 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ikr", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Reverse Knee current" );
115 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "nbv", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Breakdown Emission Coefficient" );
116 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "area_", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Area factor" );
117 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "pj_", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Perimeter factor" );
118 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tlev", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Diode temperature equation selector" );
119 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tlevc", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Diode temperature equation selector" );
120 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "eg", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.11", "", "Activation energy" );
121 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xti", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "", "Saturation current temperature exp." );
122 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cta", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Area junction temperature coefficient" );
123 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ctc", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "n.a." );
124 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ctp", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Perimeter junction capacitance temperature coefficient" );
125 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tpb", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Area junction potential temperature coefficient" );
126 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tvj", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "", "n.a." );
127 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tphp", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Perimeter junction potential temperature coefficient" );
128 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "jtun", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Tunneling saturation current" );
129 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "jtunsw", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Tunneling sidewall saturation current" );
130 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ntun", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "30", "", "Tunneling emission coefficient" );
131 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xtitun", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3", "", "Tunneling saturation current exponential" );
132 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "keg", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "EG correction factor for tunneling" );
133 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "kf", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "", "flicker noise coefficient" );
134 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "af", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "", "flicker noise exponent" );
135 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "fc", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "", "Forward bias junction fit parameter" );
136 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "fcs", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "", "Forward bias sidewall junction fit parameter" );
137 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "bv", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Reverse breakdown voltage" );
138 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ibv", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.001", "", "Current at reverse breakdown voltage" );
139 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "ib", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.001", "", "n.a." );
140 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "tcv", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Reverse breakdown voltage temperature coefficient" );
141 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cond", 114, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Ohmic conductance" );
142 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "isr", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "", "Recombination saturation current" );
143 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "nr", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "", "Recombination current emission coefficient" );
144 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "fv_max", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "", "maximum voltage in forward direction" );
145 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "bv_max", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "", "maximum voltage in reverse direction" );
146 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "id_max", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "", "maximum current" );
147 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "te_max", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "", "temperature" );
148 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "pd_max", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "", "maximum power dissipation" );
149 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "rth0", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "", "Self-heating thermal resistance" );
150 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "cth0", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1e-05", "", "Self-heating thermal capacitance" );
151 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "lm_", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Length of metal capacitor (level=3)" );
152 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "lp_", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Length of polysilicon capacitor (level=3)" );
153 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "wm_", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Width of metal capacitor (level=3)" );
154 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "wp_", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Width of polysilicon capacitor (level=3)" );
155 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xom", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "1e-06", "", "Thickness of the metal to bulk oxide (level=3)" );
156 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xoi", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "1e-06", "", "Thickness of the polysilicon to bulk oxide (level=3)" );
157 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xm", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Masking and etching effects in metal (level=3)" );
158 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "xp", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "", "Masking and etching effects in polysilicon (level=3)" );
159 modelInfos[MODEL_TYPE::DIODE].modelParams.emplace_back( "d", 113, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode model" );
160 // Instance parameters
161 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "off", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initially off", true );
162 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "temp", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
163 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "dtemp", 23, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance delta temperature", true );
164 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "ic", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial device voltage", true );
165 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "m", 22, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0.5", "", "Multiplier", true );
166 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "1", "", "Area factor", true );
167 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "pj", 19, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0", "", "Perimeter factor", true );
168 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "w", 20, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Diode width", true );
169 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "l", 21, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Diode length", true );
170 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "lm", 25, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0", "", "Length of metal capacitor (level=3)", true );
171 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "lp", 26, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0", "", "Length of polysilicon capacitor (level=3)", true );
172 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "wm", 27, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0", "", "Width of metal capacitor (level=3)", true );
173 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "wp", 28, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "0", "", "Width of polysilicon capacitor (level=3)", true );
174 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "thermal", 24, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Self heating mode selector", true );
175 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_area", 9, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT area", true );
176 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "vd", 5, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode voltage", true );
177 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "id", 4, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode current", true );
178 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "c", 4, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode current", true );
179 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "gd", 8, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode conductance", true );
180 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "cd", 18, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode capacitance", true );
181 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "charge", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode capacitor charge", true );
182 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "qd", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode capacitor charge", true );
183 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "capcur", 7, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode capacitor current", true );
184 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "p", 10, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Diode power", true );
185 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_dc", 17, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity", true );
186 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_real", 12, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sens. and real part of ac sensitivity", true );
187 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_imag", 13, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "imag part of ac sensitivity", true );
188 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_mag", 14, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac magnitude", true );
189 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_ph", 15, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac phase", true );
190 modelInfos[MODEL_TYPE::DIODE].instanceParams.emplace_back( "sens_cplx", 16, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity", true );
191
192
193 modelInfos[MODEL_TYPE::BJT] = { "BJT", "NPN", "PNP", { "C", "B", "E", "<S>" }, "Bipolar Junction Transistor", {}, {} };
194 // Model parameters
195 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "type", 309, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "NPN or PNP" );
196 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
197 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
198 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "subs", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "-1721368256", "-514428616", "Vertical or Lateral device" );
199 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnom", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" );
200 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tref", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "27", "n.a." );
201 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "is_", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Saturation Current" );
202 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ibe", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base-Emitter saturation Current" );
203 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ibc", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base-Collector saturation Current" );
204 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "bf", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Ideal forward beta" );
205 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nf", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward emission coefficient" );
206 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vaf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward Early voltage" );
207 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "va", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
208 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ikf", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward beta roll-off corner current" );
209 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ik", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
210 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ise", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E leakage saturation current" );
211 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "c2", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
212 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ne", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.5", "1.5", "B-E leakage emission coefficient" );
213 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "br", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal reverse beta" );
214 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nr", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Reverse emission coefficient" );
215 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "var", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse Early voltage" );
216 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vb", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
217 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ikr", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "reverse beta roll-off corner current" );
218 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "isc", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C leakage saturation current" );
219 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "c4", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
220 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nc", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "B-C leakage emission coefficient" );
221 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rb", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Zero bias base resistance" );
222 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "irb", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Current for base resistance=(rb+rbm)/2" );
223 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rbm", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Minimum base resistance" );
224 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "re", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter resistance" );
225 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rc", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Collector resistance" );
226 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cje", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-E depletion capacitance" );
227 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vje", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-E built in potential" );
228 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pe", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "B-E built in potential" );
229 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mje", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-E junction grading coefficient" );
230 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "me", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.33", "0.33", "B-E junction grading coefficient" );
231 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tf", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal forward transit time" );
232 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xtf", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Coefficient for bias dependence of TF" );
233 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vtf", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Voltage giving VBC dependence of TF" );
234 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "itf", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High current dependence of TF" );
235 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ptf", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "deg", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Excess phase" );
236 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cjc", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-C depletion capacitance" );
237 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vjc", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-C built in potential" );
238 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pc", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "B-C built in potential" );
239 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mjc", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-C junction grading coefficient" );
240 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mc", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.33", "0.33", "B-C junction grading coefficient" );
241 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xcjc", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Fraction of B-C cap to internal base" );
242 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tr", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal reverse transit time" );
243 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cjs", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias Substrate capacitance" );
244 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "csub_", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Zero bias Substrate capacitance" );
245 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ccs", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Zero bias Substrate capacitance" );
246 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vjs", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "Substrate junction built in potential" );
247 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ps", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.75", "0.75", "Substrate junction built in potential" );
248 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "mjs", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate junction grading coefficient" );
249 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ms", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Substrate junction grading coefficient" );
250 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xtb", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward and reverse beta temp. exp." );
251 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "eg", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.11", "1.11", "Energy gap for IS temp. dependency" );
252 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "xti", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3", "3", "Temp. exponent for IS" );
253 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "fc", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias junction fit parameter" );
254 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "kf", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Coefficient" );
255 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "af", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Exponent" );
256 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invearlyvoltf", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse early voltage:forward" );
257 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invearlyvoltr", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse early voltage:reverse" );
258 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invrollofff", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse roll off - forward" );
259 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "invrolloffr", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Inverse roll off - reverse" );
260 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "collectorconduct", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Collector conductance" );
261 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "emitterconduct", 306, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter conductance" );
262 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "transtimevbcfact", 307, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Transit time VBC factor" );
263 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "excessphasefactor", 308, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "deg", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Excess phase fact." );
264 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "iss", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate Jct. Saturation Current" );
265 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ns", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Substrate current emission coefficient" );
266 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rco", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.01", "0.01", "Intrinsic coll. resistance" );
267 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vo", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "10", "10", "Epi drift saturation voltage" );
268 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "gamma", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1e-11", "1e-11", "Epi doping parameter" );
269 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "qco", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "C", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi Charge parameter" );
270 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tlev", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
271 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tlevc", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
272 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbf1", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BF 1. temperature coefficient" );
273 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbf2", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BF 2. temperature coefficient" );
274 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbr1", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BR 1. temperature coefficient" );
275 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tbr2", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "BR 2. temperature coefficient" );
276 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikf1", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKF 1. temperature coefficient" );
277 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikf2", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKF 2. temperature coefficient" );
278 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikr1", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKR 1. temperature coefficient" );
279 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tikr2", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IKR 2. temperature coefficient" );
280 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tirb1", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IRB 1. temperature coefficient" );
281 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tirb2", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IRB 2. temperature coefficient" );
282 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnc1", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NC 1. temperature coefficient" );
283 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnc2", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NC 2. temperature coefficient" );
284 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tne1", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NE 1. temperature coefficient" );
285 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tne2", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NE 2. temperature coefficient" );
286 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnf1", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NF 1. temperature coefficient" );
287 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnf2", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NF 2. temperature coefficient" );
288 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnr1", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NR 1. temperature coefficient" );
289 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tnr2", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NR 2. temperature coefficient" );
290 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb1", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RB 1. temperature coefficient" );
291 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
292 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trb2", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RB 2. temperature coefficient" );
293 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc1", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RC 1. temperature coefficient" );
294 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
295 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trc2", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RC 2. temperature coefficient" );
296 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre1", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RE 1. temperature coefficient" );
297 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
298 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tre2", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RE 2. temperature coefficient" );
299 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trm1", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RBM 1. temperature coefficient" );
300 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "trm2", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "RBM 2. temperature coefficient" );
301 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvaf1", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAF 1. temperature coefficient" );
302 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvaf2", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAF 2. temperature coefficient" );
303 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvar1", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAR 1. temperature coefficient" );
304 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvar2", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VAR 2. temperature coefficient" );
305 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ctc", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJC temperature coefficient" );
306 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cte", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJE temperature coefficient" );
307 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cts", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "CJS temperature coefficient" );
308 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvjc", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJC temperature coefficient" );
309 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvje", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJE temperature coefficient" );
310 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tvjs", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "VJS temperature coefficient" );
311 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "titf1", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ITF 1. temperature coefficient" );
312 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "titf2", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ITF 2. temperature coefficient" );
313 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttf1", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TF 1. temperature coefficient" );
314 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttf2", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TF 2. temperature coefficient" );
315 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttr1", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TR 1. temperature coefficient" );
316 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ttr2", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "TR 2. temperature coefficient" );
317 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmje1", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJE 1. temperature coefficient" );
318 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmje2", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJE 2. temperature coefficient" );
319 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjc1", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJC 1. temperature coefficient" );
320 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjc2", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJC 2. temperature coefficient" );
321 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjs1", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJS 1. temperature coefficient" );
322 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tmjs2", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "MJS 2. temperature coefficient" );
323 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tns1", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NS 1. temperature coefficient" );
324 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tns2", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "NS 2. temperature coefficient" );
325 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nkf", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "NKF High current beta rolloff exponent" );
326 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "nk", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.5", "0.5", "n.a." );
327 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tis1", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IS 1. temperature coefficient" );
328 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tis2", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "IS 2. temperature coefficient" );
329 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tise1", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISE 1. temperature coefficient" );
330 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tise2", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISE 2. temperature coefficient" );
331 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tisc1", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISC 1. temperature coefficient" );
332 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tisc2", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISC 2. temperature coefficient" );
333 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tiss1", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISS 1. temperature coefficient" );
334 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "tiss2", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "ISS 2. temperature coefficient" );
335 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "quasimod", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature equation selector" );
336 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vg", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.206", "1.206", "Energy gap for QS temp. dependency" );
337 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "cn", 216, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "2.42", "2.2", "Temperature exponent of RCI" );
338 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "d", 217, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0.87", "0.52", "Temperature exponent of VO" );
339 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vbe_max", 218, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
340 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vbc_max", 219, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
341 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "vce_max", 220, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
342 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "pd_max", 221, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum device power dissipation" );
343 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ic_max", 222, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum collector current" );
344 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "ib_max", 223, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum base current" );
345 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "te_max", 224, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum temperature" );
346 modelInfos[MODEL_TYPE::BJT].modelParams.emplace_back( "rth0", 225, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "thermal resistance juntion to ambient" );
347 // Instance parameters
348 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
349 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "icvbe", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-E voltage", true );
350 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "icvce", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial C-E voltage", true );
351 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "m", 9, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Parallel Multiplier", true );
352 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "(Emitter) Area factor", true );
353 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "areab", 10, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Base area factor", true );
354 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "areac", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Collector area factor", true );
355 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ic", 5, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
356 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_area", 6, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "flag to request sensitivity WRT area", true );
357 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "colnode", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
358 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "basenode", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
359 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "emitnode", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
360 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "substnode", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
361 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "colprimenode", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
362 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "baseprimenode", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
363 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "emitprimenode", 219, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
364 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ic", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at collector node", true );
365 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ib", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at base node", true );
366 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "ie", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
367 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "is", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-16", "1e-16", "Substrate current", true );
368 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "vbe", 220, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-E voltage", true );
369 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "vbc", 221, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-C voltage", true );
370 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gm", 226, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal transconductance", true );
371 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gpi", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal input conductance - pi", true );
372 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gmu", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal conductance - mu", true );
373 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gx", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance from base to internal base", true );
374 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "go", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal output conductance", true );
375 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "geqcb", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "d(Ibe)/d(Vbc)", true );
376 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gcsub", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Subs. cap. equiv. cond.", true );
377 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "gdsub", 254, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Subs. Diode equiv. cond.", true );
378 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "geqbx", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal C-B-base cap. equiv. cond.", true );
379 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cpi", 250, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to emitter capacitance", true );
380 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cmu", 251, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to collector capacitance", true );
381 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cbx", 252, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base to collector capacitance", true );
382 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "csub", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Substrate capacitance", true );
383 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbe", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-E jct.", true );
384 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbc", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-C jct.", true );
385 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqsub", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in Subs. jct.", true );
386 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cqbx", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-X jct.", true );
387 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "cexbc", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total Capacitance in B-X junction", true );
388 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbe", 228, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-E junction", true );
389 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbc", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-C junction", true );
390 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qsub", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage Subs. junction", true );
391 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "qbx", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-X junction", true );
392 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "p", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
393 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_dc", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sensitivity", true );
394 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_real", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "real part of ac sensitivity", true );
395 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_imag", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "dc sens. & imag part of ac sens.", true );
396 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_mag", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac magnitude", true );
397 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_ph", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "sensitivity of ac phase", true );
398 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "sens_cplx", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_COMPLEX, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "ac sensitivity", true );
399 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "temp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "instance temperature", true );
400 modelInfos[MODEL_TYPE::BJT].instanceParams.emplace_back( "dtemp", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "instance temperature delta from circuit", true );
401
402
403 modelInfos[MODEL_TYPE::VBIC] = { "VBIC", "NPN", "PNP", { "C", "B", "E", "<S>", "<TJ>" }, "Vertical Bipolar Inter-Company Model", {}, {} };
404 // Model parameters
405 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "NPN or PNP" );
406 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
407 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
408 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnom", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" );
409 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tref", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "27", "n.a." );
410 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rcx", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic coll resistance" );
411 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rci", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic coll resistance" );
412 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vo", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi drift saturation voltage" );
413 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "gamm", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi doping parameter" );
414 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "hrcf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "High current RC factor" );
415 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbx", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic base resistance" );
416 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbi", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic base resistance" );
417 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "re", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic emitter resistance" );
418 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rs", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic substrate resistance" );
419 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbp", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Parasitic base resistance" );
420 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "is_", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Transport saturation current" );
421 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nf", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward emission coefficient" );
422 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nr", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Reverse emission coefficient" );
423 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "fc", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0.9", "0.9", "Fwd bias depletion capacitance limit" );
424 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbeo", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-E overlap capacitance" );
425 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cje", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-E depletion capacitance" );
426 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pe", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-E built in potential" );
427 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "me", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-E junction grading coefficient" );
428 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "aje", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-E capacitance smoothing factor" );
429 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbco", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-C overlap capacitance" );
430 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjc", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-C depletion capacitance" );
431 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qco", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "C", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi charge parameter" );
432 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjep", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-C extrinsic zero bias capacitance" );
433 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pc", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-C built in potential" );
434 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "mc", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-C junction grading coefficient" );
435 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajc", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-C capacitance smoothing factor" );
436 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjcp", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias S-C capacitance" );
437 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ps", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "S-C junction built in potential" );
438 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ms", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "S-C junction grading coefficient" );
439 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajs", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "S-C capacitance smoothing factor" );
440 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibei", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-18", "1e-18", "Ideal B-E saturation current" );
441 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wbe", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of IBEI from Vbei, 1-WBE from Vbex" );
442 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nei", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-E emission coefficient" );
443 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "iben", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-E saturation current" );
444 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nen", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-E emission coefficient" );
445 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibci", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Ideal B-C saturation current" );
446 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nci", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-C emission coefficient" );
447 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcn", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-C saturation current" );
448 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncn", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-C emission coefficient" );
449 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc1", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 1" );
450 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc2", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 2" );
451 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isp", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic transport saturation current" );
452 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wsp", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of ICCP" );
453 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nfp", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Parasitic fwd emission coefficient" );
454 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibeip", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-E saturation current" );
455 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibenp", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal parasitic B-E saturation current" );
456 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcip", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-C saturation current" );
457 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncip", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal parasitic B-C emission coefficient" );
458 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcnp", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Nonideal parasitic B-C saturation current" );
459 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncnp", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Nonideal parasitic B-C emission coefficient" );
460 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vef", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward Early voltage" );
461 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ver", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse Early voltage" );
462 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikf", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward knee current" );
463 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikr", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse knee current" );
464 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikp", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic knee current" );
465 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tf", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal forward transit time" );
466 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qtf", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Variation of TF with base-width modulation" );
467 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xtf", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Coefficient for bias dependence of TF" );
468 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vtf", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Voltage giving VBC dependence of TF" );
469 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "itf", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High current dependence of TF" );
470 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tr", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal reverse transit time" );
471 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "td", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward excess-phase delay time" );
472 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "kfn", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "B-E Flicker Noise Coefficient" );
473 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "afn", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise Exponent" );
474 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "bfn", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise 1/f dependence" );
475 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xre", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RE" );
476 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrb", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RB" );
477 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbi", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBI" );
478 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrc", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RC" );
479 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrci", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCI" );
480 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrs", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RS" );
481 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xvo", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of VO" );
482 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ea", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IS" );
483 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaie", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEI" );
484 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaic", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCI/IBEIP" );
485 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eais", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCIP" );
486 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eane", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEN" );
487 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eanc", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCN/IBENP" );
488 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eans", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCNP" );
489 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xis", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IS" );
490 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xii", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEI,IBCI,IBEIP,IBCIP" );
491 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xin", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEN,IBCN,IBENP,IBCNP" );
492 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnf", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of NF" );
493 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tavc", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of AVC2" );
494 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rth", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Thermal resistance" );
495 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cth", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal capacitance" );
496 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vrt", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Punch-through voltage of internal B-C junction" );
497 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "art", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Smoothing parameter for reach-through" );
498 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ccso", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Fixed C-S capacitance" );
499 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qbm", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Select SGP qb formulation" );
500 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nkf", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "High current beta rolloff" );
501 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xikf", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of IKF" );
502 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrcx", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCX" );
503 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbx", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBX" );
504 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbp", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBP" );
505 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isrr", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Separate IS for fwd and rev" );
506 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xisr", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of ISR" );
507 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dear", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Delta activation energy for ISRR" );
508 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eap", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Exitivation energy for ISP" );
509 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbbe", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E breakdown voltage" );
510 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nbbe", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-E breakdown emission coefficient" );
511 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibbe", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-06", "1e-06", "B-E breakdown current" );
512 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe1", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Linear temperature coefficient of VBBE" );
513 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe2", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Quadratic temperature coefficient of VBBE" );
514 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnbbe", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient of NBBE" );
515 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ebbe", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "exp(-VBBE/(NBBE*Vtv))" );
516 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dtemp_", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Locale Temperature difference" );
517 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vers", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.2", "1.2", "Revision Version" );
518 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vref", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reference Version" );
519 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbe_max", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
520 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbc_max", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
521 modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vce_max", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
522 // Instance parameters
523 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "m", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true );
524 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
525 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
526 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
527 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvbe", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-E voltage", true );
528 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvce", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial C-E voltage", true );
529 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "temp", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
530 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "dtemp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Instance delta temperature", true );
531 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collnode", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
532 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basenode", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
533 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emitnode", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
534 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subsnode", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
535 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcxnode", 226, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
536 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcinode", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
537 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebxnode", 228, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
538 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebinode", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
539 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebpnode", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
540 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emiteinode", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
541 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subssinode", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal substrate node", true );
542 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbe", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-E voltage", true );
543 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbc", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-C voltage", true );
544 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Collector current", true );
545 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ib", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base current", true );
546 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ie", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
547 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "is", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-16", "1e-16", "Substrate current", true );
548 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gm", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal transconductance dIc/dVbe", true );
549 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "go", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal output conductance dIc/dVbc", true );
550 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gpi", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal input conductance dIb/dVbe", true );
551 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gmu", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal conductance dIb/dVbc", true );
552 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gx", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance from base to internal base", true );
553 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbe", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to emitter capacitance", true );
554 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbex", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base to emitter capacitance", true );
555 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbc", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to collector capacitance", true );
556 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcx", 260, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External Base to collector capacitance", true );
557 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbep", 261, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to emitter capacitance", true );
558 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcp", 262, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to collector capacitance", true );
559 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "p", 263, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
560 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqcb", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal C-B-base cap. equiv. cond.", true );
561 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqbx", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External C-B-base cap. equiv. cond.", true );
562 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbe", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-E junction", true );
563 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbe", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-E jct.", true );
564 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbc", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-C junction", true );
565 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbc", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-C jct.", true );
566 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbx", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-X junction", true );
567 modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbx", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-X jct.", true );
568
569
570 modelInfos[MODEL_TYPE::HICUM2] = { "hicum2", "NPN", "PNP", { "C", "B", "E", "S", "TJ" }, "High Current Model for BJT" , {}, {} };
571 // Model parameters
572 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "For transistor type NPN(+1) or PNP (-1)" );
573 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
574 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
575 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tnom", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "300.15", "300.15", "Temperature at which parameters are specified" );
576 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tref", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "300.15", "300.15", "n.a." );
577 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "version", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::DC, "2.4.0", "2.4.0", "parameter for model version" );
578 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "c10", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e-30", "2e-30", "GICCR constant" );
579 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "qp0", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e-14", "2e-14", "Zero-bias hole charge" );
580 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ich", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High-current correction for 2D and 3D effects" );
581 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hf0", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Weight factor for the low current minority charge" );
582 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hfe", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Emitter minority charge weighting factor in HBTs" );
583 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hfc", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Collector minority charge weighting factor in HBTs" );
584 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hjei", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-E depletion charge weighting factor in HBTs" );
585 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ahjei", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parameter describing the slope of hjEi(VBE)" );
586 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rhjei", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Smoothing parameter for hjEi(VBE) at high voltage" );
587 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hjci", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-C depletion charge weighting factor in HBTs" );
588 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibeis", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-18", "1e-18", "Internal B-E saturation current" );
589 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbei", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Internal B-E current ideality factor" );
590 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ireis", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Internal B-E recombination saturation current" );
591 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mrei", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Internal B-E recombination current ideality factor" );
592 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibeps", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Peripheral B-E saturation current" );
593 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbep", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Peripheral B-E current ideality factor" );
594 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ireps", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Peripheral B-E recombination saturation current" );
595 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mrep", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Peripheral B-E recombination current ideality factor" );
596 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mcf", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Non-ideality factor for III-V HBTs" );
597 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tbhrec", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base current recombination time constant at B-C barrier for high forward injection" );
598 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibcis", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Internal B-C saturation current" );
599 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbci", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Internal B-C current ideality factor" );
600 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibcxs", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External B-C saturation current" );
601 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbcx", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "External B-C current ideality factor" );
602 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibets", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E tunneling saturation current" );
603 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "abet", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "40", "40", "Exponent factor for tunneling current" );
604 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tunode", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Specifies the base node connection for the tunneling current" );
605 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "favl", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Avalanche current factor" );
606 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "qavl", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Exponent factor for avalanche current" );
607 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kavl", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag/factor for turning strong avalanche on" );
608 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alfav", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for FAVL" );
609 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alqav", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for QAVL" );
610 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alkav", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for KAVL" );
611 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rbi0", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Zero bias internal base resistance" );
612 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rbx", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External base series resistance" );
613 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fgeo", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.6557", "0.6557", "Factor for geometry dependence of emitter current crowding" );
614 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fdqr0", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Correction factor for modulation by B-E and B-C space charge layer" );
615 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fcrbi", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ratio of HF shunt to total internal capacitance (lateral NQS effect)" );
616 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fqi", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ration of internal to total minority charge" );
617 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "re", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter series resistance" );
618 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rcx", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External collector series resistance" );
619 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "itss", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate transistor transfer saturation current" );
620 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "msf", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward ideality factor of substrate transfer current" );
621 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "iscs", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "C-S diode saturation current" );
622 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "msc", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideality factor of C-S diode current" );
623 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tsf", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Transit time for forward operation of substrate transistor" );
624 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rsu", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate series resistance" );
625 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "csu", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate shunt capacitance" );
626 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjei0", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Internal B-E zero-bias depletion capacitance" );
627 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdei", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.9", "0.9", "Internal B-E built-in potential" );
628 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zei", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Internal B-E grading coefficient" );
629 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ajei", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2.5", "2.5", "Ratio of maximum to zero-bias value of internal B-E capacitance" );
630 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aljei", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2.5", "2.5", "n.a." );
631 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjep0", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Peripheral B-E zero-bias depletion capacitance" );
632 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdep", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.9", "0.9", "Peripheral B-E built-in potential" );
633 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zep", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Peripheral B-E grading coefficient" );
634 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ajep", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2.5", "2.5", "Ratio of maximum to zero-bias value of peripheral B-E capacitance" );
635 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aljep", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2.5", "2.5", "n.a." );
636 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjci0", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Internal B-C zero-bias depletion capacitance" );
637 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdci", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.7", "0.7", "Internal B-C built-in potential" );
638 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zci", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.4", "0.4", "Internal B-C grading coefficient" );
639 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptci", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Internal B-C punch-through voltage" );
640 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjcx0", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "External B-C zero-bias depletion capacitance" );
641 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdcx", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.7", "0.7", "External B-C built-in potential" );
642 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zcx", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.4", "0.4", "External B-C grading coefficient" );
643 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptcx", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "External B-C punch-through voltage" );
644 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbcpar", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Partitioning factor of parasitic B-C cap" );
645 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbc", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
646 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbepar", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Partitioning factor of parasitic B-E cap" );
647 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbe", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1", "1", "n.a." );
648 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjs0", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "C-S zero-bias depletion capacitance" );
649 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vds", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "C-S built-in potential" );
650 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zs", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "C-S grading coefficient" );
651 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vpts", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "C-S punch-through voltage" );
652 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cscp0", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Perimeter S-C zero-bias depletion capacitance" );
653 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdsp", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Perimeter S-C built-in potential" );
654 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zsp", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Perimeter S-C grading coefficient" );
655 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptsp", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Perimeter S-C punch-through voltage" );
656 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "t0", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Low current forward transit time at VBC=0V" );
657 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "dt0h", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Time constant for base and B-C space charge layer width modulation" );
658 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tbvl", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Time constant for modeling carrier jam at low VCE" );
659 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tef0", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Neutral emitter storage time" );
660 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "gtfe", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Exponent factor for current dependence of neutral emitter storage time" );
661 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "thcs", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Saturation time constant at high current densities" );
662 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ahc", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Smoothing factor for current dependence of base and collector transit time" );
663 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alhc", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.1", "0.1", "n.a." );
664 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fthc", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Partitioning factor for base and collector portion" );
665 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rci0", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "150", "150", "Internal collector resistance at low electric field" );
666 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vlim", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Voltage separating ohmic and saturation velocity regime" );
667 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vces", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Internal C-E saturation voltage" );
668 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vpt", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Collector punch-through voltage" );
669 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aick", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.001", "0.001", "Smoothing term for ICK" );
670 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "delck", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Fitting factor for critical current" );
671 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tr", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Storage time for inverse operation" );
672 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vcbar", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Barrier voltage" );
673 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "icbar", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Normalization parameter" );
674 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "acbar", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.01", "0.01", "Smoothing parameter for barrier voltage" );
675 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cbepar", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Total parasitic B-E capacitance" );
676 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ceox", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
677 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cbcpar", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Total parasitic B-C capacitance" );
678 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ccox", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
679 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alqf", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0.167", "0.167", "Factor for additional delay time of minority charge" );
680 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alit", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.333", "0.333", "Factor for additional delay time of transfer current" );
681 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flnqs", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for turning on and off of vertical NQS effect" );
682 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kf", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker noise coefficient" );
683 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "af", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "2", "2", "Flicker noise exponent factor" );
684 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cfbe", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flag for determining where to tag the flicker noise source" );
685 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flcono", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flag for turning on and off of correlated noise implementation" );
686 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kfre", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Emitter resistance flicker noise coefficient" );
687 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "afre", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "2", "2", "Emitter resistance flicker noise exponent factor" );
688 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "latb", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Scaling factor for collector minority charge in direction of emitter width" );
689 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "latl", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Scaling factor for collector minority charge in direction of emitter length" );
690 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgb", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Bandgap voltage extrapolated to 0 K" );
691 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alt0", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "First order relative TC of parameter T0" );
692 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kt0", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Second order relative TC of parameter T0" );
693 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetaci", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent for RCI0" );
694 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alvs", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of saturation drift velocity" );
695 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alces", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of VCES" );
696 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarbi", 216, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of internal base resistance" );
697 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarbx", 217, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of external base resistance" );
698 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarcx", 218, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of external collector resistance" );
699 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetare", 219, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of emitter resistance" );
700 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetacx", 220, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature exponent of mobility in substrate transistor transit time" );
701 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vge", 221, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective emitter bandgap voltage" );
702 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgc", 222, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective collector bandgap voltage" );
703 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgs", 223, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective substrate bandgap voltage" );
704 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "f1vg", 224, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "-0.000102377", "-0.000102377", "Coefficient K1 in T-dependent band-gap equation" );
705 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "f2vg", 225, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.00043215", "0.00043215", "Coefficient K2 in T-dependent band-gap equation" );
706 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetact", 226, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Exponent coefficient in transfer current temperature dependence" );
707 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetabet", 227, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3.5", "3.5", "Exponent coefficient in B-E junction current temperature dependence" );
708 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alb", 228, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of forward current gain for V2.1 model" );
709 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "dvgbe", 229, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bandgap difference between B and B-E junction used for hjEi0 and hf0" );
710 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetahjei", 230, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature coefficient for ahjEi" );
711 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetavgbe", 231, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature coefficient for hjEi0" );
712 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flsh", 232, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for turning on and off self-heating effect" );
713 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rth", 233, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Thermal resistance" );
714 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarth", 234, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient for Rth" );
715 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alrth", 235, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "First order relative TC of parameter Rth" );
716 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cth", 236, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal capacitance" );
717 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flcomp", 237, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for compatibility with v2.1 model (0=v2.1)" );
718 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vbe_max", 238, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
719 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vbc_max", 239, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
720 modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vce_max", 240, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
721 // Instance parameters
722 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Area factor", true );
723 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
724 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ic", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
725 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "m", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true );
726 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "temp", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
727 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "dt", 5, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance delta temperature", true );
728 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tk", 264, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Actual device temperature", true );
729 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "dtsh", 265, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Temperature increase due to self-heating", true );
730 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "it", 284, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "transfer current", true );
731 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "collnode", 251, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
732 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basenode", 252, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
733 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "emitnode", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
734 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "subsnode", 254, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
735 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tempnode", 255, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of temperature node", true );
736 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "collcinode", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
737 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basebpnode", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base node", true );
738 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basebinode", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
739 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "emiteinode", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
740 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "subssinode", 260, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal substrate node", true );
741 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xfnode", 261, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf", true );
742 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xf1node", 262, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf1", true );
743 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xf2node", 263, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf2", true );
744 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbe", 266, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External BE voltage", true );
745 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbbp", 267, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "BBP voltage", true );
746 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbc", 268, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External BC voltage", true );
747 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vce", 269, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External CE voltage", true );
748 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vsc", 270, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External SC voltage", true );
749 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbiei", 271, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal BE voltage", true );
750 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbpbi", 272, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Peripheral Base to internal Base voltage", true );
751 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbici", 273, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal BC voltage", true );
752 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vciei", 274, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal CE voltage", true );
753 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ic", 275, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Collector current", true );
754 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "iavl", 276, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Avalanche current", true );
755 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ib", 277, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base current", true );
756 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ibei", 280, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Intenral Base Emitter current", true );
757 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ibci", 281, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Base Collector current", true );
758 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ie", 278, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
759 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "is", 279, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Substrate current", true );
760 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rcx_t", 282, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External (saturated) collector series resistance", true );
761 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "re_t", 283, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter series resistance", true );
762 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rbi", 285, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base resistance as calculated in the model", true );
763 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rb", 286, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total base resistance as calculated in the model", true );
764 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "betadc", 287, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Common emitter forward current gain", true );
765 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "gmi", 288, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal transconductance", true );
766 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "gms", 289, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance of the parasitic substrate PNP", true );
767 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rpii", 290, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base-emitter (input) resistance", true );
768 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rpix", 291, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base-emitter (input) resistance", true );
769 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rmui", 292, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal feedback resistance", true );
770 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rmux", 293, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External feedback resistance", true );
771 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "roi", 294, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Output resistance", true );
772 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cpii", 295, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total internal BE capacitance", true );
773 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cpix", 296, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total external BE capacitance", true );
774 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cmui", 297, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total internal BC capacitance", true );
775 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cmux", 298, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total external BC capacitance", true );
776 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ccs", 299, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "CS junction capacitance", true );
777 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "betaac", 300, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal current gain", true );
778 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "crbi", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Shunt capacitance across RBI as calculated in the model", true );
779 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tf", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Forward transit time", true );
780 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ft", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Hz", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transit frequency", true );
781 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ick", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Hz", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transit frequency", true );
782 modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "p", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
783
784
785 modelInfos[MODEL_TYPE::JFET] = { "JFET", "NJF", "PJF", { "D", "G", "S" }, "Junction Field effect transistor", {}, {} };
786 // Model parameters
787 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "njf", "pjf", "N-type or P-type JFET model" );
788 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "njf", 111, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type JFET model" );
789 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "pjf", 112, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type JFET model" );
790 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "-2", "-2", "Threshold voltage" );
791 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-2", "-2", "n.a." );
792 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "beta", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V²", SIM_MODEL::PARAM::CATEGORY::DC, "0.0001", "0.0001", "Transconductance parameter" );
793 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "lambda", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation param." );
794 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "rd", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" );
795 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "gd", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain conductance" );
796 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "rs", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" );
797 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "gs", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source conductance" );
798 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "cgs", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "G-S junction capactance" );
799 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "cgd", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "G-D junction cap" );
800 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "pb", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Gate junction potential" );
801 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "is_", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Gate junction saturation current" );
802 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "fc", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias junction fit parm." );
803 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "b", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Doping tail parameter" );
804 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "tnom", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "parameter measurement temperature" );
805 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "tcv", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Threshold voltage temperature coefficient" );
806 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "vtotc", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Threshold voltage temperature coefficient alternative" );
807 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "bex", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Mobility temperature exponent" );
808 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "betatce", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "%/°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Mobility temperature exponent alternative" );
809 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "xti", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Gate junction saturation current temperature exponent" );
810 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "eg", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.11", "1.11", "Bandgap voltage" );
811 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "kf", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Coefficient" );
812 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "af", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Flicker Noise Exponent" );
813 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "nlev", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "2", "2", "Noise equation selector" );
814 modelInfos[MODEL_TYPE::JFET].modelParams.emplace_back( "gdsnoi", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Channel noise coefficient" );
815 // Instance parameters
816 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "off", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
817 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ic", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial VDS,VGS vector", true );
818 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "m", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Parallel multiplier", true );
819 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
820 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ic-vds", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true );
821 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ic-vgs", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S volrage", true );
822 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "temp", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
823 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "dtemp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true );
824 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "drain-node", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true );
825 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "gate-node", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true );
826 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "source-node", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true );
827 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "drain-prime-node", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal drain node", true );
828 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "source-prime-node", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal source node", true );
829 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "vgs", 306, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Voltage G-S", true );
830 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "vgd", 307, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Voltage G-D", true );
831 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ig", 308, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at gate node", true );
832 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "id", 309, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at drain node", true );
833 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "is", 319, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true );
834 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "igd", 310, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current G-D", true );
835 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "gm", 311, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true );
836 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "gds", 312, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance D-S", true );
837 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ggs", 313, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance G-S", true );
838 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "ggd", 314, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance G-D", true );
839 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "qgs", 315, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage G-S junction", true );
840 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "qgd", 317, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage G-D junction", true );
841 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "cqgs", 316, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to charge storage G-S junction", true );
842 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "cqgd", 318, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to charge storage G-D junction", true );
843 modelInfos[MODEL_TYPE::JFET].instanceParams.emplace_back( "p", 320, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipated by the JFET", true );
844
845
846 modelInfos[MODEL_TYPE::JFET2] = { "JFET2", "NJF", "PJF", { "D", "G", "S" }, "Short channel field effect transistor", {}, {} };
847 // Model parameters
848 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "njf", "pjf", "N-type or P-type JFET2 model" );
849 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "njf", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "N type JFET2 model" );
850 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "pjf", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "P type JFET2 model" );
851 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "acgam", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
852 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "af", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "Flicker Noise Exponent" );
853 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "beta", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V^2", SIM_MODEL::PARAM::CATEGORY::DC, "0.0001", "0.0001", "Transconductance parameter" );
854 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "cds", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "D-S junction capacitance" );
855 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "cgd", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "G-D junction capacitance" );
856 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "cgs", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "G-S junction capacitance" );
857 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "delta", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/W", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "coef of thermal current reduction" );
858 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfeta", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "drain feedback modulation" );
859 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfe1", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
860 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfe2", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
861 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfg1", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
862 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfg2", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
863 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "mvst", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "modulation index for subtreshold current" );
864 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "mxi", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "saturation potential modulation parameter" );
865 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "fc", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias junction fit parm." );
866 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "ibd", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Breakdown current of diode jnc" );
867 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "is_", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Gate junction saturation current" );
868 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "kf", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker Noise Coefficient" );
869 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "lambda", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation param." );
870 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "lfgam", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "drain feedback parameter" );
871 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "lfg1", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
872 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "lfg2", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
873 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "n", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "gate junction ideality factor" );
874 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "p_", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Power law (triode region)" );
875 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "vbi", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Gate junction potential" );
876 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "pb", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1", "1", "n.a." );
877 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "q", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Power Law (Saturated region)" );
878 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "rd", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" );
879 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "rs", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" );
880 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "taud", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal relaxation time" );
881 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "taug", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain feedback relaxation time" );
882 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "vbd", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Breakdown potential of diode jnc" );
883 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "ver", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "version number of PS model" );
884 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "vst", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Crit Poten subthreshold conductn" );
885 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "vt0", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "-2", "-2", "Threshold voltage" );
886 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "vto", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-2", "-2", "n.a." );
887 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "xc", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "amount of cap. red at pinch-off" );
888 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "xi", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "1000", "1000", "velocity saturation index" );
889 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "z", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "rate of velocity saturation" );
890 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "hfgam", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "high freq drain feedback parm" );
891 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "gd", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain conductance" );
892 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "gs", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source conductance" );
893 modelInfos[MODEL_TYPE::JFET2].modelParams.emplace_back( "tnom", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "parameter measurement temperature" );
894 // Instance parameters
895 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "off", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
896 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ic", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial VDS,VGS vector", true );
897 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "m", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Parallel Multiplier", true );
898 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
899 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ic-vds", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true );
900 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ic-vgs", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S volrage", true );
901 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "temp", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
902 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "dtemp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true );
903 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "drain-node", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true );
904 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "gate-node", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true );
905 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "source-node", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true );
906 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "drain-prime-node", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal drain node", true );
907 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "source-prime-node", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal source node", true );
908 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "vgs", 306, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Voltage G-S", true );
909 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "vgd", 307, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Voltage G-D", true );
910 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ig", 308, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at gate node", true );
911 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "id", 309, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current at drain node", true );
912 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "is", 319, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true );
913 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "igd", 310, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Current G-D", true );
914 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "gm", 311, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true );
915 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "gds", 312, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance D-S", true );
916 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ggs", 313, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance G-S", true );
917 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "ggd", 314, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance G-D", true );
918 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "qgs", 315, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage G-S junction", true );
919 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "qgd", 317, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage G-D junction", true );
920 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "cqgs", 316, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to charge storage G-S junction", true );
921 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "cqgd", 318, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to charge storage G-D junction", true );
922 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "p", 320, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2", "2", "Power dissipated by the JFET2", true );
923 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "vtrap", 321, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Quiescent drain feedback potential", true );
924 modelInfos[MODEL_TYPE::JFET2].instanceParams.emplace_back( "vpave", 322, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Quiescent power dissipation", true );
925
926
927 modelInfos[MODEL_TYPE::MES] = { "MES", "NMF", "PMF", { "D", "G", "S" }, "GaAs MESFET model", {}, {} };
928 // Model parameters
929 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-693161728", "116101380", "N-type or P-type MESfet model" );
930 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "nmf", 113, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type MESfet model" );
931 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "pmf", 114, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type MESfet model" );
932 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "-2", "-2", "Pinch-off voltage" );
933 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-2", "-2", "n.a." );
934 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "alpha", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Saturation voltage parameter" );
935 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "beta", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V²", SIM_MODEL::PARAM::CATEGORY::DC, "0.0025", "0.0025", "Transconductance parameter" );
936 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "lambda", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "1/V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Channel length modulation parm." );
937 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "b", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.3", "0.3", "Doping tail extending parameter" );
938 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "rd", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" );
939 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "gd", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain conductance" );
940 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "rs", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" );
941 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "gs", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source conductance" );
942 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "cgs", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "G-S junction capacitance" );
943 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "cgd_", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "G-D junction capacitance" );
944 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "pb", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Gate junction potential" );
945 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "is_", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-14", "1e-14", "Junction saturation current" );
946 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "fc", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Forward bias junction fit parm." );
947 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "depl_cap", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0.5", "0.5", "Depletion capacitance" );
948 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "vcrit", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.730289", "0.730289", "Critical voltage" );
949 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "kf", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "NaN", "NaN", "Flicker noise coefficient" );
950 modelInfos[MODEL_TYPE::MES].modelParams.emplace_back( "af", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "NaN", "NaN", "Flicker noise exponent" );
951 // Instance parameters
952 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "off", 5, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
953 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "m", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Parallel Multiplier", true );
954 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
955 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "icvds", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true );
956 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "icvgs", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true );
957 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "dnode", 201, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true );
958 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "gnode", 202, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true );
959 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "snode", 203, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true );
960 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "dprimenode", 204, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal drain node", true );
961 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "sprimenode", 205, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal source node", true );
962 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "vgs", 206, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true );
963 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "vgd", 207, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain voltage", true );
964 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "cg", 208, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate capacitance", true );
965 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "cd", 209, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain capacitance", true );
966 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "cgd", 210, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Gate-Drain capacitance", true );
967 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "gm", 211, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true );
968 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "gds", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true );
969 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "ggs", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source conductance", true );
970 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "ggd", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain conductance", true );
971 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "cqgs", 216, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true );
972 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "cqgd", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true );
973 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "qgs", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true );
974 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "qgd", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true );
975 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "is", 6, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-14", "1e-14", "Source current", true );
976 modelInfos[MODEL_TYPE::MES].instanceParams.emplace_back( "p", 7, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipated by the mesfet", true );
977
978
979 modelInfos[MODEL_TYPE::MESA] = { "MESA", "NMF", "PMF", { "D", "G", "S" }, "GaAs MESFET model", {}, {} };
980 // Model parameters
981 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "type", 165, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "nmf", "nmf", "N-type or P-type MESfet model" );
982 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "-1.26", "-1.26", "Pinch-off voltage" );
983 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "-1.26", "-1.26", "n.a." );
984 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "lambda", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.045", "0.045", "Output conductance parameter" );
985 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "lambdahf", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.045", "0.045", "Output conductance parameter at high frequencies" );
986 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "beta", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A/V^2", SIM_MODEL::PARAM::CATEGORY::DC, "0.0085", "0.0085", "Transconductance parameter" );
987 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vs", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "150000", "150000", "Saturation velocity" );
988 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rd", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Drain ohmic resistance" );
989 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rs", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Source ohmic resistance" );
990 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rg", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate ohmic resistance" );
991 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ri", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-source ohmic resistance" );
992 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Gate-drain ohmic resistance" );
993 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rdi", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic source ohmic resistance" );
994 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rsi", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic drain ohmic resistance" );
995 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "phib", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "8.01088e-20", "8.01088e-20", "Effective Schottky barrier height at room temperature" );
996 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "phib1", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
997 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tphib", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
998 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "astar", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "40000", "40000", "Effective Richardson constant" );
999 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ggr", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "40", "40", "Reverse diode conductance" );
1000 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "del", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.04", "0.04", "" );
1001 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "xchi", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.033", "0.033", "" );
1002 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tggr", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.033", "0.033", "n.a." );
1003 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "n", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Emission coefficient" );
1004 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "eta", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.73", "1.73", "Subthreshold ideality factor" );
1005 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "m_", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2.5", "2.5", "Knee shape parameter" );
1006 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "mc", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3", "3", "Knee shape parameter" );
1007 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "alpha", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1008 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "sigma0", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.081", "0.081", "Threshold voltage coefficient" );
1009 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vsigmat", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.01", "1.01", "" );
1010 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vsigma", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "" );
1011 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "mu", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.23", "0.23", "Mobility" );
1012 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "theta", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1013 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "mu1", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Second moblity parameter" );
1014 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "mu2", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Third moblity parameter" );
1015 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "d", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.2e-07", "1.2e-07", "Depth of device" );
1016 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "nd", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e+23", "2e+23", "Doping density" );
1017 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "du", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3.5e-08", "3.5e-08", "Depth of device" );
1018 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ndu", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1e+22", "1e+22", "Doping density" );
1019 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "th", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "1e-08", "1e-08", "Thickness of delta doped layer" );
1020 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ndelta", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "6e+24", "6e+24", "Delta doped layer doping density" );
1021 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "delta", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "5", "5", "" );
1022 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tc", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Transconductance compression factor" );
1023 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tvto", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient for vto" );
1024 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "alphat", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
1025 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tlambda", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1.79769e+308", "1.79769e+308", "Temperature coefficient for lambda" );
1026 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "teta0", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1.79769e+308", "1.79769e+308", "First temperature coefficient for eta" );
1027 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "teta1", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Second temperature coefficient for eta" );
1028 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tmu", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "300.15", "300.15", "Temperature coefficient for mobility" );
1029 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "xtm0", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "First exponent for temp dependence of mobility" );
1030 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "xtm1", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Second exponent for temp dependence of mobility" );
1031 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "xtm2", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Third exponent for temp dependence of mobility" );
1032 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ks", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Sidegating coefficient" );
1033 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vsg", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Sidegating voltage" );
1034 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "tf", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "300.15", "300.15", "Characteristic temperature determined by traps" );
1035 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "flo", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1036 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "delfo", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1037 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "ag", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1038 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rtc1", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1039 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "rtc2", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "" );
1040 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "zeta", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "" );
1041 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "level", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2", "2", "" );
1042 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "nmax", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e+16", "2e+16", "" );
1043 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "gamma", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "3", "3", "" );
1044 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "epsi", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.08411e-10", "1.08411e-10", "" );
1045 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "cas", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "" );
1046 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "cbs", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "" );
1047 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "pmf", 164, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "P type MESfet model" );
1048 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "nmf", 131, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "N type MESfet model" );
1049 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "gd", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.79769e+308", "1.79769e+308", "Drain conductance" );
1050 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "gs", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.79769e+308", "1.79769e+308", "Source conductance" );
1051 modelInfos[MODEL_TYPE::MESA].modelParams.emplace_back( "vcrit", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Critical voltage" );
1052 // Instance parameters
1053 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "off", 8, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
1054 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "m", 12, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "2.5", "2.5", "Parallel Multiplier", true );
1055 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "l", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Length of device", true );
1056 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "w", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Width of device", true );
1057 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "icvds", 3, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial D-S voltage", true );
1058 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "icvgs", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial G-S voltage", true );
1059 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "td", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance drain temperature", true );
1060 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "ts", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance source temperature", true );
1061 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "dtemp", 11, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance temperature difference", true );
1062 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "dnode", 201, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of drain node", true );
1063 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "gnode", 202, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of gate node", true );
1064 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "snode", 203, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of source node", true );
1065 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "dprimenode", 204, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal drain node", true );
1066 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "sprimenode", 205, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal source node", true );
1067 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "gprimenode", 206, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of internal gate node", true );
1068 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "vgs", 207, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source voltage", true );
1069 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "vgd", 208, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain voltage", true );
1070 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cg", 209, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate capacitance", true );
1071 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cd", 210, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain capacitance", true );
1072 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cgd", 211, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate_Drain capacitance", true );
1073 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "gm", 212, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance", true );
1074 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "gds", 213, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Drain-Source conductance", true );
1075 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "ggs", 214, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source conductance", true );
1076 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "ggd", 215, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain conductance", true );
1077 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "qgs", 216, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Source charge storage", true );
1078 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cqgs", 217, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-source charge storage", true );
1079 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "qgd", 218, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Gate-Drain charge storage", true );
1080 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cqgd", 219, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Capacitance due to gate-drain charge storage", true );
1081 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "cs", 9, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Source current", true );
1082 modelInfos[MODEL_TYPE::MESA].instanceParams.emplace_back( "p", 10, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipated by the mesfet", true );
1083
1084
1085 modelInfos[MODEL_TYPE::HFET1] = { "HFET1", "NMF", "PMF", { "D", "G", "S" }, "HFET1 Model", {}, {} };
1086 // Model parameters
1087 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vt0", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "Pinch-off voltage" );
1088 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vto", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "n.a." );
1089 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "lambda", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Output conductance parameter" );
1090 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rd", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Drain ohmic resistance" );
1091 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rs", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Source ohmic resistance" );
1092 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rg", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Gate ohmic resistance" );
1093 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rdi", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Drain ohmic resistance" );
1094 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rsi", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Source ohmic resistance" );
1095 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rgs", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Gate-source ohmic resistance" );
1096 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rgd", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "Gate-drain ohmic resistance" );
1097 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "ri", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1098 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "rf", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1099 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "eta", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Subthreshold ideality factor" );
1100 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "m_", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Knee shape parameter" );
1101 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "mc", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Knee shape parameter" );
1102 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "gamma", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Knee shape parameter" );
1103 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "sigma0", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "Threshold voltage coefficient" );
1104 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vsigmat", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1105 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vsigma", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1106 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "mu", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Moblity" );
1107 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "di", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "Depth of device" );
1108 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "delta", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1109 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vs", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "Saturation velocity" );
1110 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "nmax", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1111 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "deltad", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "Thickness correction" );
1112 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "js1d", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1113 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "js2d", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1114 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "js1s", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1115 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "js2s", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1116 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "m1d", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1117 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "m2d", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1118 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "m1s", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1119 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "m2s", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1120 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "epsi", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1121 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "p_", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1122 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "cm3", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1123 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "a1", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1124 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "a2", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1125 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "mv1", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1126 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "kappa", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1127 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "delf", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1128 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "fgds", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1129 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "tf", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1130 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "cds", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1131 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "phib", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1132 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "talpha", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1133 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "mt1", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1134 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "mt2", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1135 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "ck1", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1136 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "ck2", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1137 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "cm1", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1138 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "cm2", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1139 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "astar", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1140 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "eta1", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1141 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "d1", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1142 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vt1", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1143 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "eta2", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1144 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "d2", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1145 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "vt2", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1146 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "ggr", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "" );
1147 modelInfos[MODEL_TYPE::HFET1].modelParams.emplace_back( "del", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "",